
CodeGraphSMOTE - Data Augmentation for
Vulnerability Discovery

Tom Ganz1, Erik Imgrund1, Martin Härterich1, and Konrad Rieck2

1 SAP Security Research {firstname.lastname}@sap.com
2 Technische Universität Berlin rieck@tu-berlin.de

Abstract. The automated discovery of vulnerabilities at scale is a cru-
cial area of research in software security. While numerous machine learn-
ing models for detecting vulnerabilities are known, recent studies show
that their generalizability and transferability heavily depend on the qual-
ity of the training data. Due to the scarcity of real vulnerabilities, avail-
able datasets are highly imbalanced, making it difficult for deep learn-
ing models to learn and generalize effectively. Based on the fact that
programs can inherently be represented by graphs and to leverage re-
cent advances in graph neural networks, we propose a novel method to
generate synthetic code graphs for data augmentation to enhance vul-
nerability discovery. Our method includes two significant contributions:
a novel approach for generating synthetic code graphs and a graph-to-
code transformer to convert code graphs into their code representation.
Applying our augmentation strategy to vulnerability discovery models
achieves the same originally reported F1-score with less than 20% of
the original dataset and we outperform the F1-score of prior work on
augmentation strategies by up to 25.6% in detection performance.

Keywords: Vulnerability Discovery · Data Augmentation · Graph Neu-
ral Networks.

1 Introduction

The research in the field of automatic vulnerability discovery has made remark-
able progress recently but is still far from complete. Traditional rule-based tools
suffer from high false negative or false positive rates in their detection perfor-
mance. Consequently, advances in deep learning spark interest in the develop-
ment of learning-based vulnerability discovery models. For instance, recent mod-
els borrow techniques from natural language processing using recurrent neural
networks (RNNs), in particular, long short-term memorys (LSTMs), where the
source code is processed as a flat sequence of code tokens [6, 30, 31, 38]. Even
more recent approaches use graph neural networks (GNNs) thereby leveraging
code graphs as a compact structure to represent the syntactic and semantic
properties of programs [6, 10, 43, 55]. Graph learning is still a young field with a
big room for improvement, but a promising technique to foster further research,
especially in software security [15].

2 Ganz et al.

However, one major obstacle in learning-based vulnerability discovery, is ob-
taining enough representative code samples since most datasets available are
either too small, unrealistic or imbalanced [6, 34, 44]. While clean code sam-
ples are vastly available and can be gathered easily, vulnerable samples, on the
other hand, are scarce [2]. GNNs architectures suffer under that shortage the
most, as they tend to overfit very easily and hence need balanced labels for
training. Chakraborty et al. [6] report that models trained on inappropriate and
imbalanced datasets are less transferable and have disadvantageous detection
capabilities. The question arises then, on how to apply vulnerability discovery
models to projects that lack a large history of vulnerabilities.

In traditional machine learning domains, data augmentation techniques are
commonplace: For image data, random crops, offsets and rotations generate
slightly different images with the same underlying meaning [40]. In tabular data,
Synthetic Minority Oversampling Technique (SMOTE) is used to interpolate
between minority samples and thus generate new samples [7]. Natural language
processing uses techniques, such as synonym replacement, random word swaps,
deletions or back translation [39]. While graph-based deep learning provides a
unified method for neural networks on grids, groups, geodesics and gauges, no
augmentation method for full graphs and even less so for code graphs exists.

Although augmentation techniques for node-level [54] and edge-level [52]
tasks are available, techniques for graph classification are still unexplored [51].
The graph-specific augmentation methods that have been developed so far, either
only perturb graphs [32, 51], cannot generate new graphs with node attributes
of the target domain [21] or only perturb the node attributes [26]. Even worse,
these augmentation strategies are disconnected from the underlying vulnerabil-
ity discovery task, causing the generated samples to be neither syntactically nor
semantically correct rendering them effectively uninterpretable.

More promising approaches like Graph2Edit [50], SequenceR [9] or Hop-
pity [12] can generate new vulnerable samples by learning semantic edits ap-
plied to clean code samples [34]. Although they are better suited for balancing
vulnerability datasets than random graph perturbations, they already require a
large number of vulnerable samples for training, which is the problem we are
trying to solve in the first place. Furthermore, Nong et al. [34] observe that neu-
ral code editing approaches for vulnerability injection only yield significant im-
provements if the generated samples are assessed and selected and thus require
extensive manual labor. Hence, we need data augmentation strategies explic-
itly tailored for vulnerability discovery which do not require large amounts of
vulnerable training data and produce human-readable code. We present Code-
GraphSMOTE, a novel method to augment code graph samples for vulnerability
discovery models. It generates new vulnerable samples for the minority class in
a dataset by porting SMOTE to the graph domain, specifically for code graphs.
It does so by interpolating in the latent space of a variational autoencoder.

Our approach focuses on interpretable and sound sample generation. In
essence, the contributions we present are:

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 3

1. A novel method to generate sound and interpretable synthetic code graphs.
2. A graph-to-code transformer to translate code graphs back to source code.
3. An evaluation demonstrating the practicability of our method.

Moreover, we publish our implementation of this method to foster further
research in this direction3. In the rest of this paper, we review Related Work
in Section 2. Then we lay down the preliminaries for vulnerability discovery in
Section 3 and for data augmentation in Section 4. We proceed to thoroughly
describe our method in Section 5, then present our experimental evaluation in
Section 6 and end with the Conclusion in Section 7.

2 Related Work

Some graph-specific data augmentation methods perturbing the given samples
have been developed, while graph data augmentation methods that are extending
the dataset by generating new graphs are heavily underdeveloped.

DropEdge [37] reduces overfitting and over-smoothing by removing random
edges from the graph at training time, and several improvements over DropE-
dge have been made by choosing the dropped edges in a biased way [16, 41].
Other methods are based on adding and removing edges [8, 53], masking node
attributes [56], sampling a random subset of the nodes [13, 20] and cropping
sub-graphs [45]. DeepSMOTE interpolates images in the latent space of an au-
toencoder instead of the original pixel space.
This greatly improves downstream classification performance for imbalanced
datasets by generating synthetic minority samples and works better than gener-
ating new samples based on generative adversarial networks [11]. The same idea
is applied to graphs to generate new nodes for imbalanced node classification
tasks in [54]. There, a GAE is trained to reconstruct the adjacency matrix, while
simultaneously learning latent features of the edges. The nodes are then over-
sampled using SMOTE in the latent space obtained by the GAE, which is also
used to generate edges connecting the new nodes with the rest of the graph. This
method achieves better accuracy in the task of imbalanced node classification.
However, no adaptation of this method has been published, that interpolates
between graphs to be used in graph classification. Chakraborty et al. [6] already
apply SMOTE on graph embeddings before using a vulnerability classifier, this
was found to increase detection performance. However, their method is gener-
ally, hardly applicable since it uses intermediate representations from another
vulnerability discovery model and does not reconstruct interpolated graphs let
alone the underlying source code.

Other approaches have been proposed from different research branches. Neu-
ral code editing uses deep learning to generate syntactically and semantically
valid code samples. Different approaches, for instance, Hoppity [12], SequenceR
[9] and Graph2Edit [50] have been developed. A recent study found out, that
these approaches do not work well for augmenting vulnerability datasets [34].

3 https://github.com/SAP-samples/security-research-codegraphsmote

4 Ganz et al.

Furthermore, the generated additional samples by Graph2Edit were found to be
unrealistic but still helpful as additional training data for a vulnerability discov-
ery downstream task. Lastly, Evilcoder [36] allows for automatically inserting
bugs using rule-based code modifications, for instance, modified/removed buffer
checks. However, this method produces vulnerable code samples that are too
trivial to distinguish from clean samples and hence not suitable for machine
learning.

3 Vulnerability Discovery

The preliminary materials for our method concerning learning-based vulnera-
bility discovery, program representations and representation learning on code
graphs are discussed in this section.

3.1 Learning-based Static Analyzer

We start by formalizing the vulnerability discovery task in the following section:
Given a particular representation of a program, a static vulnerability discovery
method is a decision function f that maps a code snippet x to a label y ∈
{vulnerable,clean}.

Learning-based methods for vulnerability discovery build on such a decision
function f = fΘ parameterized by weights Θ that are obtained by training on a
dataset of vulnerable and non-vulnerable code [18]. Compared to classical static
analysis tools, learning-based approaches do not have a fixed rule set and can
therefore adapt to the characteristics of different vulnerabilities in the training
data. Current learning-based approaches differ in the program representation
used as input and the inductive bias, that is, the way f depends on the weights Θ.

3.2 Program Representations

Different representations for programs have been used as a basis for vulnera-
bility discovery models in the past. Popular natural language processing-based
approaches represent a program as the natural token sequence that appears
in the source code [38]. Since programs can be modeled inherently as directed
graphs [1], more recent approaches make use of graph representations [10, 43, 55]
for source code instead of flat token sequences achieving state-of-the-art perfor-
mances [38]. We refer to the resulting program representation as a code graph
and denote the underlying directed graphs as G = G(V,E) with vertices V
and edges E ⊆ V × V . Moreover, for v ∈ V , we define N(v) as the set of its
neighboring nodes.

Code graphs differ in the syntactic and semantic features they capture. Re-
cent works, for instance, rely only on syntactic features using the abstract syntax
tree (AST) [1], while newer approaches also capture the semantic properties, as
for instance using the control flow graph (CFG), which connects statements with

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 5

edges in the order they will be executed or the data flow graph (DFG) connect-
ing the usages of variables. Based on these classical representations, combined
graphs have been developed. A popular one is the code property graph (CPG)
[49], which resembles a combination of the AST, CFG and program dependence
graph (PDG). Other approaches use different combinations [5, 46]. All these rep-
resentations are denoted CPGs, however, to distinguish them from the original
CPG proposed by Yamaguchi et al. [49], we formally define a code graph in Def-
inition 1 as an attributed and combined graph structure representing programs.

Definition 1. A code graph is an attributed graph G = (V,E,XV , XE) derived
from source code and providing a syntactic or semantic view of the program.

Naturally, code graphs have attributes, for instance, a node could have code
tokens or AST labels attached. Since deep learning algorithms expect input fea-
tures to be numeric, recent works embed these attributes into vector spaces
[6, 10, 43, 55]. Hence a code graph extends the pair (V,E) by node attributes
XV ∈ R|V |×dV of dimensionality dV and edge attributes XE ∈ R|E|×dE of di-
mensionality dE [47].

3.3 Learning on Code Graphs

Vulnerability discovery using code graphs as input representation is a graph
classification task. Building on a set of labels y and a set of attributed code
graphs G it aims to learn a function fΘ : G 7→ y. A set Gtrain of training graphs
with known labels for each of those is given through which the parameters Θ of
the function are optimized.

To build a graph neural network for code graphs, a convolutional and a
global pooling block are needed [3]. Many graph convolutional blocks have been
developed, the simplest of which is the graph convolutional network (GCN) [25].
The GCN can be formulated based on:

X ′ = D̂−1/2ÂD̂−1/2XΘ, (1)

where Â = A + I is the adjacency matrix with added self-loops, D̂ii =
∑

j Âij

is the degree matrix and X the initial node feature matrix. Other types of
convolutional blocks might be a gated graph neural network (GGNN) [29] or
a graph isomorphism network (GIN) [48], where the former uses gated recurrent
units instead of a feed-forward network and the latter has a separate optimizable
parameter for the weights applied to the self-loops. In vulnerability discovery,
however, we often lack a representative amount of vulnerable samples and, in
consequence, have to deal with imbalanced graph classification [22].

4 Data Augmentation

Since there are few examples of vulnerabilities in the wild and the datasets for
vulnerability discovery are unbalanced, as a remedy, we discuss the basics of
data augmentation in this section.

6 Ganz et al.

4.1 SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) [7] extends a dataset
by generating new samples for all minority classes based on feature-space inter-
polation in the input domain. This way, the imbalance ratio of the dataset can
be reduced and generalization to minority classes improved. New samples are
generated by randomly selecting a sample and choosing a second sample from
a random subset of the k nearest neighbors of the same class. New samples
are generated by linearly interpolating between the features of the two selected
nodes, yielding a new feature vector x̃ = λx1 + (1 − λ)x2, where x1, x2 are the
features of the original samples and λ ∈ [0, 1] is a uniformly random number.

4.2 Graph Autoencoder

Due to their discrete nature, SMOTE is not readily applicable to code graphs.
It is not directly evident how one would interpolate between two graphs with
both having, e.g., different numbers of nodes or edges. Some recent works apply
SMOTE on the compressed latent space representation learned by an autoen-
coder in the computer vision domain [11], which learns to generate meaningful
latent variables for samples from a data distribution [23] consisting of an en-
coder and a decoder. Moreover, the encoder of a variational autoencoder infers
a probability distribution of the latent representation, by choosing a parametric
probability distribution as the prior distribution for the latent variables. During
training, the encoder infers the parameters of that distribution. For example, a
variational autoencoder with a Gaussian distribution as the prior for the latent
space would have two encoders eµ(x) = zµ and eσ2(x) = zσ2 . Then the latent
representation needs to be decoded by sampling from z ∼ N (zµ, zσ2). This way,
the decoder can still operate on a continuous latent representation, where it then
tries to reconstruct the original input [24].

Graph autoencoders (GAEs) take this idea to the domain of graphs. They
encode a graph into a latent space representation and decode it back into a graph.
The latent space can be structured as a node- or graph-wise latent representation.
The latter implies a single constant-sized vector for the complete graph, while the
former latent space representation consists of a vector per node. Furthermore,
the reconstruction target can be the adjacency matrix [24], the node or edge
feature matrix [28]. Just like for the classical autoencoder, a variational variant
exists, called variational graph autoencoder (VGAE).

5 CodeGraphSMOTE

CodeGraphSMOTE is applied on code graphs since not only do they provide
state-of-the-art performance results on vulnerability discovery but also retain
semantic and syntactic information in a compressed structure. Moreover, Code-
GraphSMOTE is also equipped with a transformer to convert graphs back to
source code representations. In particular, it consists of an autoencoder, inter-
polation method and graph-to-code transformation model. Figure 1 shows an
overview of those blocks and their interplay.

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 7

Trans-

van ~

CPG c) f Chode >
extractor { embed- 4 NS
o- -pG

Fig. 1: Overview of the building blocks of CodeGraphSMOTE for training on
imbalanced graph datasets.

5.1 Overview

The method has multiple training stages: The first stage is training a transformer
model to convert code graphs to their original source code (1). The learned inter-
mediate token embeddings of the transformer can then be used in the following
stage to provide aggregated node embeddings for the VGAE. The second stage
consists of training an autoencoder model to reconstruct code graphs in an un-
supervised fashion (2). In the third stage, new samples can be generated by
applying classic SMOTE to the VGAE latent representation (3). The last stage
consists of training a vulnerability discovery model on an augmented version of
the original dataset (4).

To augment the dataset, first, all code graphs of the original dataset are
encoded by the autoencoder. Next, a balanced dataset is created by generating
interpolated samples for the minority class. Lastly, the interpolated and original
latent space representations are decoded by the autoencoder to generate new
graphs for the vulnerability discovery downstream task. We proceed to explain
our VGAE architecture and then provide insights into our transformer model.

5.2 Code Graph Generation

The input to the VGAE is a code graph, while the learning task is to pertain to as
much information in the latent space as needed to reconstruct the original code

8 Ganz et al.

graph. This ensures a semantically structured latent representation of vulnerable
and clean code samples.

Encoder To produce latent space representations on the level of code graphs,
a node-level autoencoder is implemented, where the intermediate node embed-
dings are calculated by applying a GNN to the input code graph. Conventional
GNNs, such as GCNs, are low-pass filters and thus remove high-frequency fea-
tures [35]. As it could be detrimental to decoding performance to smooth out the
high-frequency features of the graph, an alternative architecture is used. The de-
convolutional autoencoder [28] aims to preserve features of all components of the
frequency spectrum by using more terms of the approximated eigendecomposi-
tion. Hence, a deconvolutional network with three layers and graph normalization
[4] is used as the architecture for the encoder.

Decoder The decoder needs to decode not only the edge and node features but
also the graph’s topology. For the node level decoder, we use a GNN from Li
et al. [28] which employs an approximate inverse convolution operation, restor-
ing high-frequency features and consequently alleviating the problem of GCNs
being mostly low-pass filters [35]. Since the node feature decoder depends on
the graph’s topology, we first reconstruct the adjacency matrix using a topology
decoder.

The most prominent topology decoder is the inner product decoder which
connects two distinct nodes with latent representations X ′

i and X ′
j by an edge

with probability σ(X ′
i X

′
j
T
). Therefore, we can sample edges given these proba-

bilities or, in a deterministic setting, draw an edge iff σ(X ′
i X

′T
j) > p0 (usually

p0 = 0.5), or in other words iff

X ′
i X

′T
j > t (2)

for some threshold t (usually t = 0). Note that increasing t leads to fewer edges.
During the reconstruction of the adjacency matrix, nodes with similar fea-

tures tend to have a very high probability of an edge between them. As a solu-
tion, we decode the node features and topology separately, by splitting the latent
representation of each node in half and using only one part for each decoder.
The topology decoder is then trained to reconstruct the adjacency matrix using
a weighted binary cross-entropy loss due to the natural sparsity of adjacency
matrices.

Another problem arises since decoders based on the inner product can only
reconstruct undirected graphs due to their inherent symmetry. Hence, we im-
plement an asymmetric inner-product-based decoder, by splitting the adjacency
matrix into two halves by its diagonal. One half of the topology decoder’s latent
space is used for the upper and one for the lower part of the adjacency matrix.

Finally, a third problem with inner-product-based decoders stems from the
random node embeddings causing the expected average degree to increase pro-
portionally with the number of nodes. This is problematic since the average

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 9

0 250 500 750 1000
Number of Nodes

3

4

5

6
Av

er
ag

e
De

gr
ee

(a) ReVeal

0 250 500 750 1000
Number of Nodes

0

100

200

300

400

500

(b) Unadjusted Decoding

0 250 500 750 1000
Number of Nodes

3

4

5

6

(c) Adjusted Decoding

Fig. 2: Average degree compared against the number of nodes for code graphs,
decoded naively and decoded with our correction.

degree will be higher for larger graphs, while in reality, code graphs have the
property that their average node degree is independent of the number of nodes,
which is illustrated in Figure 2a and Figure 2b.

The number of reconstructed edges for a particular graph can be seen as a
random variable

|E| ∼ B(p, |V |2 − |V |) (3)

with p the binomial probability to decode a particular edge among the possible
|V |2 − |V | edges. Note that we consider directed edges but no loops. Hence,
we obtain E(|E|) = p · (|V |2 − |V |). Assuming a deterministic sampling, edges
are decoded, when their similarity as defined by the inner product is above
a certain threshold t. Adjusting the threshold by incorporating the expected
average embedding distance of the closest embeddings reduces the effect of the
proportionally increasing average degree as depicted in Figure 2c. The derivation
of this adjustment can be found in Appendix A.1.

Interpolation Method To augment the code graph datasets, new samples need
to be generated given a set of selected graphs. To do that, we propose a method
to select and interpolate code graphs in their latent space representations.

A sample denotes an embedding matrix X ′ ∈ R|V |×dV for a fixed latent space
dimension dV and number of nodes |V |. Since this matrix has different sizes for
graphs with different numbers of nodes, no common distance metric can be
applied to calculate the nearest neighbors. To mitigate this issue, the graphs
are padded with zero vectors for non-existing nodes to the size of the largest
graph in the dataset. Additionally, this same issue is found when interpolating
the samples and solved in the same way. The interpolated embedding matrix

X̂ ′ = λX ′
a + (1− λ)X ′

b (4)

for two chosen code graphs Ga, Gb and a uniformly random λ ∈ [0, 1] is truncated
to a number of nodes interpolated in the same way: |V̂ | = λ|Va|+(1−λ)|Vb| with
the same λ. This interpolation method is not permutation-equivariant, thus the
node ordering affects the results. Since we use the same method in the nearest

10 Ganz et al.

void truncate_type(char *dest, char *src, int *size)
{

char *dest = malloc(size);
if (!dest)

return;

memcpy(dest, src, sizeof(src));
memcpy(src, dest, size);
free(dest);

}

void truncate(char *src, int size) {
char *dest = malloc(size);
if (!dest) return;
memcpy(dest, src, size);
memcpy(src, dest, sizeof(dest));
free(dest);

}

void truncate(char *src, int size)
{

char *dest = malloc(size);
if (!dest) return;
strcpy(dest, src);
memcpy(src, dest, sizeof(dest));
free(dest);

}

Fig. 3: An interpolated sample in its code representation.

neighbor search, however, this results in the corresponding nodes already being
close to each other.

Finally, new latent space representation samples are generated, which can
then be decoded using the decoder. To train a graph vulnerability discovery
model on the augmented code graphs, we have to reconstruct both, edges and
nodes. The node features are recovered using the node decoder’s output which
is trained using a cosine embedding loss. The adjacency matrices need to be dis-
cretized by sampling from a Bernoulli distribution with a probability conforming
to the edge probability in the reconstructed adjacency matrix.

5.3 Graph to Code Transformation

The ability to transform code graphs back to source code adds three beneficial
properties to our method: First, we can produce human-readable samples, sec-
ond, we are no longer limited to GNNs and third, we can use the latent node
embeddings as a fixed size vector for each node in the VGAE. Thus, we train
a transformer [42] to decode non-interpolated graphs and eventually apply it to
interpolated samples.

Similar to the variational autoencoder (VAE), a transformer model consists
of an encoder and a decoder comprising multiple blocks each. A single block con-
sists of two components, namely a bidirectional multi-head self-attention mech-
anism and a feed-forward neural network. The attention mechanism generates
an attention vector for each code token providing a weight on how much one
token affects the other.

We propose an auto-regressive transformer model with a BART-like archi-
tecture consisting of six encoder and decoder layers, a width of 128 and only

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 11

two heads per layer [27]. The code graph is linearized by sequentially extracting
the tokens through a depth-first traversal of the AST and embedded using the
pre-trained byte-pair tokenizer by Nijkamp et al. [33]. As each node consists of
a variable number of tokens, the transformer has to learn a fixed-size token-level
embedding of dimension R|N |×dV . To this end, an additional transformer en-
coder layer is trained jointly, that learns a normalized and pooled node vector.
This way, inter-dependencies of the tokens are encoded in a token-level repre-
sentation for the node-level features for the code graphs in the GAE training.

Figure 3 shows a generated synthetic sample at the bottom. We take the
graph representation from the upper two samples and interpolate between both
latent representations. Then we translate the resulting graph to its code repre-
sentation using the transformer model.

Both source methods truncate a string but run into buffer overflows due to
potential size mismatches between src, dest and size. Note, that the upper samples
are taken from two real vulnerabilities. The resulting generated function has a
different name and signature, but its body is similar: It is obvious, that the
resulting method is also an example of string truncation with a buffer overflow.
The unused parameter char *dest in the signature may be erroneously caused by
either the generation of the graph or the conversion of the graph to code but
may be negligible due to the nature of data augmentation.

6 Evaluation

This section introduces the experiments designed to tackle three research ques-
tions, in particular, we describe our experimental setting and provide empirical
results answering the following questions:

RQ1 Does CodeGraphSMOTE provide a sound latent representation?

RQ2 Can CodeGraphSMOTE improve detection performance when we lack data?

RQ3 Do the augmented datasets yield better model transferability?

6.1 Experimental Setting

We rely on Fraunhofer-CPG [46] as a tool to generate code graphs and pre-
process them using networkx [19]. We use the GNN implementations from Py-
torch Geometric [14] and train them on AWS EC2 g4dn instances. All experi-
ments are conducted using 10-fold cross-validation and our VGAE consists of 2
encoder and 2 decoder layers for topology and node features respectively with a
dimension of 384. We use an Adam and AdamW optimizer for the VGAE and
the transformer with learning rates of 0.0005 and 0.001 respectively.

Datasets and Models For our experimental evaluation, we use the following
three datasets from recent publications around learning-based vulnerability dis-
covery. All three datasets consist of a corpus of vulnerable and clean samples
from C and C++ code repositories.

12 Ganz et al.

1. Chromium+Debian. The Chromium+Debian dataset consists of 1924 vul-
nerable and 17294 clean samples. Thus, the imbalance ratio is 10.01%. The
dataset has been extracted from the Debian and Chromium bug tracker and
hence contains C++ code samples [6].

2. FFmpeg+Qemu. The FFmpeg+Qemu dataset is nearly balanced with a ratio
of 45.96% having 11466 and 9751 samples respectively for the clean and
vulnerable class. The code was extracted using security-related keywords
that have been matched against commits in the Github project repositories
from Qemu and FFmpeg [55].

3. PatchDB. Finally, we utilize PatchDB [44], which consists of patches ex-
tracted from the national vulnerability database (NVD) for multiple C and
C++ open-source projects. Vulnerable samples are labeled by their common
weakness enumerations (CWEs). Overall, it has 3441 vulnerable and 30149
clean samples resulting in an imbalance ratio of 10.24%.

As ML models for the downstream vulnerability discovery task, we use Re-
Veal and Devign [6, 55]. They both rely on GGNNs and a pooling layer followed
by a feed-forward neural network prediction head. We train the transformer,
VGAE and downstream classifier on the same training set and test on a disjoint
separate dataset containing only real samples.

Metrics We use two metrics recommended especially for imbalanced learning
tasks to provide a comprehensive evaluation of the model’s performance. By
comparing these scores before and after augmentation, we can assess whether
the augmentation has improved the model’s performance.

1. F1-score. The F1-score is a commonly used metric to evaluate the perfor-
mance of a classification model. It’s a measure of the model’s ability to cor-
rectly predict both positive and negative classes. The F1-score is calculated
as the harmonic mean of precision (P) and recall (R).

2. Balanced accuracy. The second is balanced accuracy, which takes into ac-
count both, the true positive rate and true negative rate, and is calculated
as the average of these two rates.

Baselines To compare our method for plausibility and practicability, we bench-
mark against four commonly used augmentation strategies for graphs in general
and vulnerability discovery models in particular.

1. SARD enrichment. The software assurance reference dataset (SARD) is a
synthetic vulnerability corpus containing about 30k vulnerable and 30k clean
samples. The vulnerable samples are pattern generated, and consequently,
ML models tend to overfit [6]. We use vulnerable samples from this dataset
to enrich their original dataset as proposed by Nong et al. [34].

2. Graph Perturbation. Borrowed from the graph domain, we can augment the
dataset by randomly dropping nodes and edges. This graph perturbation

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 13

20 22 59 78 11
9

12
0

12
5

18
9

19
0

20
0

26
4

26
9

28
4

31
0

34
7

35
8

36
2

36
9

39
9

40
1

41
5

41
6

47
6

67
4

73
2

76
3

77
2

78
7

83
5

20225978119120125189190200264269284310347358362369399401415416476674732763772787835 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: Average normalized inter- and intra-cluster distance per CWE on
PatchDB.

technique can be applied to vulnerable samples to augment the dataset.
However, this technique will most likely break the code graph’s semantics
and generate unintelligible samples.

3. Graph2Edit. According to an empirical study [34], Graph2Edit [50] is cur-
rently state-of-the-art in neural code generation for vulnerability discovery.
It uses a GGNN to learn graph and node embeddings and a LSTM network
to predict edit actions on the AST. It is trained to convert ASTs of clean
samples to vulnerable ones.

4. Downsampling. A naive approach is to downsample the majority class. That
is, we remove clean samples until we have an imbalance ratio of 50%.

6.2 Results

The discussion of the experimental results is organized along the three research
questions posed at the beginning of this section, which we try to answer in the
following.

RQ1 — Does CodeGraphSMOTE provide a sound latent representation? First,
we want to assess whether the learned latent space from the VGAE in Code-
GraphSMOTE represents important features from the code graph and in partic-
ular for vulnerability discovery. The scatter plot on the left-hand side of Figure 4
shows a two-dimensional t-SNE embedding of the VGAE latent representation
per vulnerable code graph of the training set from PatchDB. Each sample is col-
ored by its CWE. We can reason about the quality of the interpolated vulnerable
samples since it correlates with the quality of the cluster. At least five clusters
are clearly visible, including CWE-269 (improper privilege management), CWE-
347 (improper verification of cryptographic signature) and CWE-763 (release of
invalid pointer or reference).The right-hand side of Figure 4 shows the average

14 Ganz et al.

Downsampled SARD Node-Dropping CodeGraphSMOTE

20 40 60 80 100
Percentage of dataset

0.5

0.6

0.7
Ba

la
nc

ed
 A

cc
ur

ac
y

(a) FFmpeg+Qemu

20 40 60 80 100
Percentage of dataset

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

(b) Chromium+Debian

20 40 60 80 100
Percentage of dataset

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

(c) PatchDB

Fig. 5: Dataset augmentation strategies by replacement.

inter- and intra-cluster distances between the CWEs. The matrix is diagonal-
dominant suggesting that the learned representation places samples from the
same type of vulnerability closer together. Overall, we can conclude that the
latent representation encodes crucial information about the semantics of the
code and vulnerability. Since SMOTE selects neighbors that are close to each
other as interpolation candidates, it is safe to assume that it will automatically
interpolate between vulnerabilities of the same type.

The latent space representation learned by the VGAE clusters code
graphs by their vulnerability type, making it suitable for SMOTE on
vulnerability datasets.

RQ2 — Can CodeGraphSMOTE improve detection performance when we lack
data? We evaluate our method against simple downsampling, SARD enrichment
and node-dropping. We simulate smaller datasets, by removing a partition of
vulnerable samples from the original FFmpeg+Qemu, Chromium+Debian and
PatchDB datasets and re-balance them by augmenting the remaining. Figure 5
shows the performance of the Chromium+Debian model measured in their bal-

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 15

Table 1: Cross dataset evaluation presenting the F1-score. C+D and F+Q denote
the Chromium+Debian and FFmpeq+Qemu datasets respectively.

Model Training Testing Downsampling Graph2Edit SARD CodeGraphSMOTE

ReVeal
C+D F+Q 31.86% 36.94% 15.16% 41.37%
F+Q C+D 19.31% 21.31% 20.07% 18.26%

Devign
C+D F+Q 5.25% 7.11% 5.70% 62.97%
F+Q C+D 16.83% 19.31% 18.58% 18.20%

anced accuracy. The x-axis denotes the percentage of real samples remaining
from the original datasets, while 100% corresponds to the original dataset re-
balanced using the specific method. On PatchDB, the most realistic dataset,
CodeGraphSMOTE achieves an overall area under balanced accuracy score of
73.9%, compared against 68.9%, 65.5% and 63.5% for SARD, Node-Dropping
and Downsampling respectively. Hence CodeGraphSMOTE yields a significantly
stronger improvement compared to the other approaches with nearly 24% im-
provement against simple downsampling. This is particularly interesting because
PatchDB has the most diverse and realistic dataset containing samples from
multiple projects collected directly from the NVD. Although no augmentation
strategy is a clear winner on the FFmpeg+Qemu dataset and the overall per-
formance is only slightly above 55% as already shown by Chakraborty et al. [6]
and Ganz et al. [15], we can still see that SARD is slightly worse than the other
methods. Other observations are not statistically significant due to their large
standard deviations.
For the Chromium+Debian datasets all augmentation strategies have less influ-
ence on the model as depicted by the large standard deviation compared to their
effect on PatchDB. There is no augmentation strategy that dominates another
with statistical significance. Thus, no method provides a statistically significant
improvement over another except for downsampling. Downsampling is the worst
method on every dataset while simple graph perturbation is the second best
approach.

Our method provides an improvement of up to 21% balanced accuracy
against simple downsampling on realistic datasets and keeps the model
performance constant at only 20% of the original dataset.

RQ3 — Do the augmented datasets yield better model transferability? Finally,
we evaluate whether a pre-trained instance of CodeGraphSMOTE can be used
to enhance vulnerability discovery when applied to different datasets that lack
labeled or vulnerable samples. Despite recent publications showing that the De-
vign dataset (FFmpeg+Qemu) and model are unrealistic and underperforming
[6, 15], we still include both to stay comparable with Graph2Edit.

16 Ganz et al.

In contrast, we excluded PatchDB, which contains over 300 C and C++ projects,
to demonstrate the usability of CodeGraphSMOTE on small individual projects.

Table 1 shows the average F1-score for the models ReVeal and Devign us-
ing four different augmentation strategies to re-balance the datasets. While the
models have been trained and tested on disjoint datasets, our results, as shown in
Table 1 and Figure 5, indicate that training on the FFmpeg+Qemu dataset did
not yield noteworthy detection capabilities. However, with F1-scores of 18.26%
and 18.20%, respectively, CodeGraphSMOTE can be considered comparable to
Graph2Edit with its F1-scores of 21.31% and 19.31%. Furthermore, the mod-
els trained on the Devign+Qemu dataset did not provide any transferability,
highlighting the challenges associated with this dataset.

In contrast, training on the Chromium+Debian dataset reveals that Code-
GraphSMOTE significantly improves detection capabilities by a factor of nearly
9 for Devign and 12% for ReVeal, as compared to the state-of-the-art method
Graph2Edit. Interestingly, the Chromium+Debian dataset, with a higher degree
of class imbalance than the FFmpeg+Qemu dataset, demonstrates the superior
performance of CodeGraphSMOTE with increasing class imbalance.

CodeGraphSMOTE significantly improves model transferability by up to
800% measured by the F1-score. The performance enhancement scales
with increasing class imbalance.

7 Conclusion

This work introduces CodeGraphSMOTE, a novel augmentation method de-
signed to address imbalanced attributed code graph datasets. Our approach em-
ploys a variational graph autoencoder to interpolate between code graph samples
in the latent space, and a transformer model to convert these graphs back to
their source code representation. On the way, we also address several common is-
sues with graph autoencoders in general, particularly in topology reconstruction.
Through experimental evaluation, we demonstrate that our method not only
achieves comparable vulnerability discovery performance with fewer data but
also improves the models’ generalizability and transferability to new datasets.

Acknowledgment. This work has been funded by the German Federal Ministry
of Education and Research (BMBF) in the project IVAN (FKZ: 16KIS1165K).

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 17

A Appendix

A.1 Derivation of the Threshold Adjustment

Our goal is to adjust the threshold t in Equation (2) such that the average
degree of a vertex in the reconstructed graph equals a given degree deg. Using
E(|E|) = p (|V |2−|V |), since we consider directed edges but no loops, this is the
case if p (|V |2 − |V |) = deg |V | or

p =
deg

|V | − 1
.

Now p = P (X ′
i X

′T
j > t) where X ′

i and X ′
j are d-dimensional latent representa-

tions of two nodes which (due to the targeted latent distribution of the VAE) we
assume to be independent and identically distributed according to the standard
normal distribution N (0d, Id). Hence the correct adjusted choice of t is given by

t = CDF−1
Z

(
1− deg

|V | − 1

)
(5)

where CDFZ is the cumulative distribution function of the product Z = XY of
two i.i.d. vectors X and Y as above. By symmetry, we may assume that Y is
parallel to the first coordinate axis and then X can be marginalized to this axis
without affecting the inner product. Thus, we assume w.l.o.g. d = 1.

The density of Z = XY = 1
4

(
(X + Y)2 + (X − Y)2

)
(a.k.a. variance gamma

distribution) is known to be given by PDFZ(z) = 1
πK0(z) where K0(z) is a

modified Bessel function of the second kind (see [17]).
Finally, we use numerical integration to get CDFZ(z) = 1

π

∫ z
K0(z)dz and

solve numerically for t as in Equation (5).

Bibliography

[1] Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs. ArXiv abs/1711.00740 (2017)

[2] Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C.,
Cavallaro, L., Rieck, K.: Dos and don’ts of machine learning in computer security.
In: 31st USENIX Security Symposium (USENIX Security 22), pp. 3971–3988,
USENIX Association, Boston, MA (Aug 2022), ISBN 978-1-939133-31-1

[3] Bronstein, M.M., Bruna, J., Cohen, T., Velivckovi’c, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges (2021)

[4] Cai, T., Luo, S., Xu, K., He, D., yan Liu, T., Wang, L.: Graphnorm: A principled
approach to accelerating graph neural network training (2020)

[5] Cao, S., Sun, X., Bo, L., Wei, Y., Li, B.: Bgnn4vd: Constructing bidirectional
graph neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576
(2021)

[6] Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: Are we there yet? IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING TBD, 1 (2020)

18 Ganz et al.

[7] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (jun 2002),
ISSN 1076-9757

[8] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view
(2019)

[9] Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L., Poshyvanyk, D., Monper-
rus, M.: Sequencer: Sequence-to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering 47(09), 1943–1959 (sep 2021), ISSN
1939-3520

[10] Cheng, X., Wang, H., Hua, J., Xu, G., Sui, Y.: Deepwukong: Statically detecting
software vulnerabilities using deep graph neural network. ACM Trans. Softw. Eng.
Methodol. 30(3) (apr 2021)

[11] Dablain, D., Krawczyk, B., Chawla, N.: Deepsmote: Fusing deep learning and
smote for imbalanced data. IEEE Transactions on Neural Networks and Learning
Systems PP, 1–15 (01 2022), https://doi.org/10.1109/TNNLS.2021.3136503

[12] Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., Wang, K.: Hoppity: Learning graph
transformations to detect and fix bugs in programs. In: International Conference
on Learning Representations (2020)

[13] Do, T.H., Nguyen, D.M., Bekoulis, G., Munteanu, A., Deligiannis, N.: Graph con-
volutional neural networks with node transition probability-based message pass-
ing and DropNode regularization. Expert Systems with Applications 174, 114711
(2021)

[14] Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geomet-
ric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds
(2019)

[15] Ganz, T., Härterich, M., Warnecke, A., Rieck, K.: Explaining graph neural net-
works for vulnerability discovery. In: Proceedings of the 14th ACM Workshop on
Artificial Intelligence and Security, p. 145–156, AISec ’21, New York, NY, USA
(2021)

[16] Gao, Z., Bhattacharya, S., Zhang, L., Blum, R.S., Ribeiro, A., Sadler, B.M.: Train-
ing robust graph neural networks with topology adaptive edge dropping (2021)

[17] Gaunt, R.E.: Products of normal, beta and gamma random variables: Stein op-
erators and distributional theory. Brazilian Journal of Probability and Statistics
32(2), 437 – 466 (2018)

[18] Grieco, G., Grinblat, G.L., Uzal, L., Rawat, S., Feist, J., Mounier, L.: Toward
large-scale vulnerability discovery using machine learning. In: Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy, p. 85–96,
CODASPY ’16, New York, NY, USA (2016)

[19] Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx (1 2008)

[20] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

[21] Han, X., Jiang, Z., Liu, N., Hu, X.: G-mixup: Graph data augmentation for graph
classification. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 162, pp. 8230–8248,
PMLR (17–23 Jul 2022)

[22] Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
Journal of Big Data 6(1), 27 (Mar 2019)

https://doi.org/10.1109/TNNLS.2021.3136503

CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery 19

[23] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR
abs/1312.6114 (2014)

[24] Kipf, T.N., Welling, M.: Variational graph auto-encoders. NIPS Workshop on
Bayesian Deep Learning (2016)

[25] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR)
(2017)

[26] Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B., Taylor, G., Goldstein,
T.: Robust optimization as data augmentation for large-scale graphs. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 60–69 (June 2022)

[27] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., Zettlemoyer, L.: BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp.
7871–7880, Association for Computational Linguistics, Online (Jul 2020)

[28] Li, J., Li, J., Liu, Y., Yu, J., Li, Y., Cheng, H.: Deconvolutional networks on graph
data. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems (2021)

[29] Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neu-
ral networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings (2016)

[30] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Transactions on Dependable
and Secure Computing 19(4), 2244–2258 (2022)

[31] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.: Vuldeep-
ecker: A deep learning-based system for vulnerability detection. In: 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018, The Internet Society (2018)

[32] Luo, Y., McThrow, M., Au, W.Y., Komikado, T., Uchino, K., Maruhashi, K., Ji,
S.: Automated data augmentations for graph classification (2022)

[33] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S.,
Xiong, C.: Codegen: An open large language model for code with multi-turn pro-
gram synthesis. In: The Eleventh International Conference on Learning Represen-
tations (2023)

[34] Nong, Y., Ou, Y., Pradel, M., Chen, F., Cai, H.: Generating realistic vulnerabilities
via neural code editing: An empirical study. p. 1097–1109, ESEC/FSE 2022, New
York, NY, USA (2022)

[35] NT, H., Maehara, T.: Revisiting graph neural networks: All we have is low-pass
filters (2019)

[36] Pewny, J., Holz, T.: Evilcoder: Automated bug insertion. In: Proceedings of the
32nd Annual Conference on Computer Security Applications, p. 214–225, ACSAC
’16, New York, NY, USA (2016)

[37] Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convo-
lutional networks on node classification. In: ICLR (2020)

[38] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Elling-
wood, P., McConley, M.: Automated vulnerability detection in source code using
deep representation learning. pp. 757–762 (12 2018)

[39] Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models
with monolingual data. CoRR abs/1511.06709 (2015)

20 Ganz et al.

[40] Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. Journal of Big Data 6(1), 60 (Jul 2019), ISSN 2196-1115

[41] Spinelli, I., Scardapane, S., Hussain, A., Uncini, A.: Biased edge dropout for en-
hancing fairness in graph representation learning (2021)

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg,
U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc.
(2017)

[43] Wang, H., Ye, G., Tang, Z., Tan, S.H., Huang, S., Fang, D., Feng, Y., Bian, L.,
Wang, Z.: Combining graph-based learning with automated data collection for
code vulnerability detection. IEEE Transactions on Information Forensics and
Security 16, 1943–1958 (2021), ISSN 15566021

[44] Wang, X., Wang, S., Feng, P., Sun, K., Jajodia, S.: Patchdb: A large-scale secu-
rity patch dataset. In: 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 149–160 (2021)

[45] Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B.: Graphcrop: Subgraph cropping
for graph classification. CoRR abs/2009.10564 (2020)

[46] Weiss, K., Banse, C.: A language-independent analysis platform for source code
(2022)

[47] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems 32(1), 4–24 (jan 2021), https://doi.org/10.1109/tnnls.2020.2978386

[48] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2019)

[49] Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, pp. 590–604 (2014)

[50] Yao, Z., Xu, F.F., Yin, P., Sun, H., Neubig, G.: Learning structural edits via incre-
mental tree transformations. In: 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net
(2021)

[51] Zhao, T., Liu, G., Gunnemann, S., Jiang, M.: Graph data augmentation for graph
machine learning: A survey (2022)

[52] Zhao, T., Liu, G., Wang, D., Yu, W., Jiang, M.: Counterfactual graph learning
for link prediction. CoRR abs/2106.02172 (2021)

[53] Zhao, T., Liu, Y., Neves, L., Woodford, O.J., Jiang, M., Shah, N.: Data augmen-
tation for graph neural networks. In: AAAI (2021)

[54] Zhao, T., Zhang, X., Wang, S.: Graphsmote: Imbalanced node classification on
graphs with graph neural networks. Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (2021)

[55] Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran
Associates, Inc. (2019)

[56] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: Proceedings of the Web Conference 2021, ACM
(2021)

https://doi.org/10.1109/tnnls.2020.2978386

	CodeGraphSMOTE - Data Augmentation for Vulnerability Discovery

