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ABSTRACT
Software backdoors pose a major threat to the security of computer

systems. Minor modifications to a program are often sufficient to

undermine security mechanisms and enable unauthorized access to

a system. The direct approach of detecting backdoors using static

or dynamic program analysis is a daunting task that becomes in-

creasingly futile with the attacker’s capabilities. As a remedy, we

introduce an orthogonal strategy for the detection of software back-

doors. Instead of searching for concealed functionality in program

code, we propose to analyze how a software has been developed

and locate clues for malicious activities in its version history, such

as in a Git repository. To this end, we model the version history as

a collaboration graph that reflects how, when and where developers
have committed changes to the software. We develop a method for

anomaly detection using graph neural networks that builds on this

representation and is able to detect spatial and temporal anomalies

in the development process. We evaluate our approach using a

collection of real-world backdoors added to Github repositories.

Compared to previous work, our method identifies a significantly

larger number of backdoors with a low false-positive rate. While

our approach cannot rule out the presence of software backdoors,

it provides an alternative detection strategy that complements ex-

isting work focused only on program analysis.
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• Security and privacy→ Software and application security;
Software security engineering; • Computing methodologies
→Machine learning.
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1 INTRODUCTION
Backdoors are a notorious security threat in software development.

Minor tweaks to an authentication or encryption routine are of-

ten enough to lift protection mechanisms and provide an attacker

with access to sensitive data. In particular, in open-source software

projects with hundreds of developers, it is hard to spot such ma-

nipulations and differentiate legitimate fixes from carefully crafted

backdoors. While techniques for program analysis and code isola-

tion might potentially unveil backdoors [e.g., 32, 35, 37], they are

hindered by the complexity of code and the inherent limitations

of automatic program analysis [26]. Consequently, there exist nu-

merous cases where developers unnoticeably sneaked backdoor

functionality into open-source projects and caused harm to their

users [23, 41]. As an example, a malicious patch was inserted into

the Git repository of PHP in 2021. The patch was disguised as a

typo fix, but actually contained a backdoor that compromised the

general security of the web platform [13].

Fortunately, however, in modern software development, code

changes rarely go unobserved. Instead, version control systems,

such as Git and SVN, meticulously track any change and contributor

to a software repository, providing a clear view of the collaborative

development effort. This view not only helps locate software bugs

and vulnerabilities but also provides valuable clues for identifying

anomalous code changes. These clues can manifest in unusual

commit messages, code locations or even development times. Unlike

program code, the information in a version control system is less

obstructed by technical complexity and can therefore serve as an

alternative source for spotting malicious activities.

In this paper, we thus focus on detecting backdoors in software

through anomalies in the development process. To this end, we

model the version history of software as a collaboration graph that

reflects how, when and where developers have committed changes

to it. Based on this compact representation, we introduce a method

for anomaly detection that is capable of identifying spatial and tem-

poral anomalies. Technically, this method is based on a combination

of graph neural networks and one-class learning, where the neural

network learns a representation of the collaboration graph, while

the one-class learner spots unusual activities in it. Compared to

https://doi.org/10.1145/3577923.3583657
https://doi.org/10.1145/3577923.3583657
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prior work, this learning-based approach spares us from manually

defining how a backdoor manifests in the version history and thus

provides a general detection strategy.

We investigate the detection performance of our approach in an

evaluation with 109 Github repositories, covering a total of 100.000

commits (80k for training and 20k for testing). As detection tar-

gets, we consider real backdoors that have been previously found

in Github repositories and investigate how they can be identified

solely through commits in the version history. As part of this eval-

uation, we compare our approach to state-of-the-art methods for

detecting malicious and anomalous commits. We find that our ap-

proach based on collaboration graphs outperforms these baselines

methods by detecting three times more backdoors while also re-

ducing the false-positive rate. In summary, our method identifies

78.9% of the backdoors in the software repositories with 0.7% false

alarms on average.

Despite any research effort, the detection of backdoors remains a

problem that can never be solved completely [see 26]. Still, we argue

that our approach significantly raises the bar for adversaries to

introduce backdoors during software development. In conjunction

with other techniques for mitigating backdoor functionality, such

as static program analysis and code isolation, our work strengthens

the protection of software from silent code manipulations.

Contributions. We make the following contributions in this work:

• Backdoors as collaboration anomalies. We model the problem

of locating backdoors in software as anomaly detection in

collaboration graphs, complementing existing work based

on static program analysis.

• Detection using graph neural networks.We propose a novel

graph-based detection method that infers a model of nor-

mal collaboration in a software repository and identifies

backdoors as deviations thereof.

• Empirical evaluation on real backdoors.We introduce a dataset

with and without backdoors of 109 repositories resulting in a

graphmodel with over 100k commits andmore than amillion

nodes. On this data, our approach significantly outperforms

related methods for backdoor detection.

The rest of this paper is organized as follows: We describe the

challenges of backdoor detection in Section 2. Section 3 then in-

troduces our approach for identifying backdoors in collaboration

graphs. Our experimental setup and the evaluation of our approach

are presented in Section 4 and Section 5, respectively. We discuss

related work in Section 6 and conclude the paper in Section 7.

2 PROBLEM SETTING
The detection of backdoors in software is an extremely challenging

problem. The attacker can take great care to cloak malicious func-

tionality and evade detection. For example, a backdoor might be

disguised as an inconspicuous fix or a minor code improvement. To

detect such modifications in a software repository, the examining

developer needs to have fundamental knowledge of the project. If

the open-source project is large, with over hundreds of developers,

this knowledge is often split among the contributors, as they are

more specialized in smaller areas within the project. Conversely,

if the project is small, the effort of cross-reviewing every commit

quickly becomes too costly. As a result, the necessary knowledge

for spotting sneaked-in backdoor code is usually not available when

a developer reviews a code change.

Static and dynamic program analysis provides means to de-

tect software bugs and vulnerabilities, mitigating this situation

[e.g., 2, 30, 42, 44]. However, these approaches are unlikely to spot

backdoor code in commits, as they are designed to detect unin-

tentional defects rather than intentional tampering. Similarly, ap-

proaches to isolate code functionality can help reduce the attack

surface for backdoors. Yet, these techniques are not always ap-

plicable and require a considerable engineering effort for integra-

tion [32, 37]. Motivated by these difficulties, we tackle the problem

of backdoor detection from a different perspective. In particular,

we expect a malicious change to a project to be detectable as an

anomaly in the development process. That is, we aim at spotting

irregularities in the characteristics of the change rather than the

resulting code in the software repository

Let us, as an example, look at the backdoor that was introduced

to the PHP platform. To carry out the attack, the adversary im-

personated the project maintainer
1
. The malicious commit was

disguised as a harmless typo fix. As seen in Listing 1, it introduces

a backdoor that is triggered as soon as the user-agent header eval-

uates to zerodium. It then becomes possible to execute arbitrary

code placed directly after this string.

1 static void php_zlib_output_compression_start(void)
2 {
3 zval zoh;
4 php_output_handler *h;
5 zval *enc;
6 ...
7 if (strstr(Z_STRVAL_P(enc), "zerodium")) {
8 zend_try {
9 zend_eval_string(Z_STRVAL_P(enc)+8, NULL,
10 "REMOVETHIS: sold to zerodium, mid 2017");
11 ...

Figure 1: Malicious commit from PHP disguised as "typo fix".
Malicious changes are highlighted in red.

Without knowledge of the underlying context, neither a static

analyzer nor a vulnerability detection tool would consider this

piece of code insecure. While cryptographic signatures can protect

from impersonations in Git, they are often omitted and sometimes

even forged. In this particular case, the developer’s signature key

was compromised, rendering the detection of the impersonation

impossible. In contrast, the operation of the malicious commit con-

tains relevant clues that deviate from the usual development. For

instance, the malicious commit was introduced at around 06:00 AM.

However, the past 20 commits to the master branch by the original

contributor were all issued later than 06:00 PM, suggesting that the

commit deviates from his usual working hours. Consequently, we

motivate that the analysis of the development process provides an

alternative source for detecting software backdoors.

2.1 Challenges
While it may seem straightforward to investigate the version history

of a software project, there exist several challenges that hinder such

1
https://github.com/php/php-src/commit/c730aa2
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an analysis. In this section we describe the challenges which we

effectively address in this paper. Later, in Section 3, we explain how

our method overcomes the underlying problems.

Complex relations. A commit can be thought of as a transition from

one state of the project to the next. In the case of the PHP back-

door, the attack was conducted over two subsequent commits. An

analysis approach focusing on individual commits would overlook

such patterns. Hence, the approach needs to inspect a commit to-

gether with its preceding and subsequent commits. Furthermore,

several properties of the code change need to be considered as well,

such as collaborations between contributors, temporal relationships,

project files belonging to or changed by the same contributors and

so on. All these properties can play a crucial role in detecting in-

jected backdoors in commits.

Large variance. Current works by Gonzalez et al. [12] and Goyal

et al. [14] focus on manually engineered detection rules. However,

these patterns of misuse are limited by the prior knowledge of the

practitioners who produce them. Since anomalous commits may

exhibit a large variance in their behavior and appearance, a fixed

rule set is not able to capture all possible sources of anomalous

properties. Moreover, the statistical properties of the contributors’

behavior stem from vastly different underlying distributions, ren-

dering manual modeling of regular behavior intractable.

Semantic reasoning. The PHP backdoor from Listing 1 presents a

commit titled typo fix that modifies two lines in the source code of

a C function. The fact that a fix for a typo causes more than one

change is suspicious and a potential indicator of anomalous activity.

As a result, a detection approach needs to be able to detect semantic

discrepancies between what the developer claims to contribute and

what she actually commits to the repository. This is a challenging

task, as it requires providing a link between natural language text

and code changes.

3 METHODOLOGY
Equipped with an understanding of the key challenges for detecting

backdoors in software development, we are ready to introduce our

method. In the following, we describe its four main components

and how they act together. First, we present the concept of collabo-
ration graphs that serves as a basis for modeling the development

process (Section 3.1). Next, we derive our learning-based detec-

tion approach that embeds individual features in a vector space

(Section 3.2), constructs an embedding of the entire graph using

graph-neural networks (Section 3.3) and finally employs a one-class

learner for anomaly detection of nodes (Section 3.4).

3.1 Collaboration Graphs
Version control systems, such as Git and SVN, have become ubiqui-

tous in software development, as they make collaborative develop-

ment in a team transparent. Metadata extracted from such a system

intrinsically yields a representation as a graph that reveals collabo-

rations between authors, changes to code, and connections to past,

present and future states [33]. We represent these relations as a

directed graph 𝐺 (𝑉 , 𝐸) composed of nodes 𝑉 and directed edges

𝐸 ⊆ 𝑉 ×𝑉 . Sticking to the taxonomy established by Git, the central

node type within this graph is a commit. We enrich this representa-

tion by introducing node types for branches, files, developers, and
methods (functions) as shown in Figure 2. As a result, we obtain a

heterogeneous graph that characterizes the development process

within a software repository in a compact form.

In particular, wemodel the relation between commits by drawing

a directed edge from one commit to its successor. The relation

between a developer who changes a project state and the new

commit which is thereby created is modeled as a directed edge

from the developer to the commit. Also, the files and methods

that have been modified by a commit are modeled as nodes while

having a relationship as depicted in Figure 2. Thus, a commit points

to its changed method and file nodes. The file node points to its

containing method nodes. Further, we add a directed edge from the

project’s branch to all its underlying commits.

       
     
    

     

       

          
    

Branch 

Name 

Developer 

Name 

Email 

Location 

      

Parent 

(_Y 
Commit 

Message 

Timestamp 

   

   
  

File Method 

Name Name 

LoC Complexity 

 
Figure 2: Model of a collaboration graph.

Collaboration graphs of a software repository exhibit rich prop-

erties about the project and the development process. For example,

the graph captures statistics of the developers’ behavior, such as

their working hours, recent collaborations among developers, the

change frequency per file or interconnections between commonly

changed files. Besides the topological structure of the collaboration

graph, we augment it with further attributes.

• Developer node: We enrich the node of a developer with sta-

tistical information about her behavior, including the overall

number of commits and projects, the account age, name,

email, number of merge and non-merge commits and if avail-

able, her location.

• Commit node: We attach additional attributes to the commit

node, such as the commit message, the timestamp, merge

type and whether the commit is signed off or not. Moreover,

we add code-derived metrics taken from the delta maintain-

ability model (DMM), such as the unit value of the interfacing

property, the size property and the complexity property [4].

• File and method node: We attach the name and mime-type

to all file nodes. Moreover, we add the number of past and

present methods and the lines of code to these nodes. Finally,

for the method node, we only include the parent file name

and its method name.
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Furthermore, we attach several attributes to the edges of the

graph. We add the commit timestamp to the edges pointing to the

descendant file and method nodes. We add the type of file update to

the edge connecting the commit node to its file nodes, i.e., whether

it was modified, created or deleted. Finally, we add the fan-in and

fan-out of the method (input and output degree), the start and end

lines, the token count and the cyclomatic complexity to all edges

connecting a file to method nodes

Overall, the proposed augmentation of the collaboration graph

provides us with a comprehensive view of the information con-

tained in a software repository. By modeling different relations as

directed edges, we are able to track changes in the project state

across commits, developers, files, methods and even time — estab-

lishing a rich foundation for anomaly detection.

3.2 Feature Representation
Several of the defined attributes are numeric in nature and do

not need any pre-processing to be accessible by machine-learning

techniques. Non-numeric attributes, however, need to be embedded

in a vector space, so that they become usable by learning models.

Identifiers. We encode all identifiers numerically as unique labels,

such as branch names, project identifiers, developer names, email

addresses, locations, file names, file types, and method names. In

addition, we encode the Levenshtein distance between the devel-

oper names and email addresses as well as between the file names

and method names. These additional numerical values enable our

detection method to spot inconsistencies in combinations of these

strings, such as typosquatting or fake addresses.

Natural text. For longer texts like commit messages, we use a

word2vec embedding based on the implementation provided by

Gensim [10]. In particular, we make use of the continuous bag-of-

words (CBOW) algorithm using negative sampling. We employ a

standard configuration of the algorithm by setting the window size

to 5 and the dimension to 100. Since we expect the distribution

of words to differ per repository, we train an embedding for each

collaboration graph.

Time information. We decompose a commit’s Unix timestamp in

the pre-processing step to be more insightful for our model. To

differentiate between commits made on weekdays and weekends,

we use the one-hot encoding of the day of the week. Similarly, we

one-hot encode the month of the year to get 12 features. To let

the model learn the sequential nature of the commits, we use the

following transformation:

(1) Starting from a fixed reference date (January 1, 2005), we

compute the number of days from this reference to the com-

mit, which gives us a continuous and increasing numeric

day feature.

(2) In addition, we encode hour ℎ, minute𝑚 and second 𝑠 of the

day by projecting it via

time =
1

2

(
1 − cos

(
2𝜋 · (ℎ + (𝑚 + 𝑠/60)/60)/24

) )
, (1)

This gives us a periodic feature that starts from 0 at the start

of the day, goes to 1 at midday and finally drops back to zero

at the end of the day.

3.3 Embedding Collaboration Graphs
For anomaly detection in collaboration graphs, we use the recent

learning model of graph neural networks (GNNs) with convolutional
layers. The success of convolutional neural networks in vision is at-

tributed to their use of filters to successively aggregate information

from small regions of an image and learn to represent elementary

shapes, textures and complex features. Similarly, GNNs aim to solve

learning tasks on graphs by exploiting the relations of nodes and

edges in different proximity. Hence, we use convolutional layers to

generate representations that capture the graph structure as well

as the feature representations. In particular, we consider one vector

space of dimension 𝑑 for each node and one of dimension 𝑘 for each

edge. That is, we define 𝑋 = ℎ
(0)
𝑣 ∈ R |𝑉 |×𝑑

as the node features and
likewise 𝐹 = ℎ

(0)
𝑒 ∈ R |𝐸 |×𝑘 as the edge features.

In general, graph convolutional networks define a message-

passing algorithm which for each layer 𝑙 = 0, 1, 2, . . . comprises

three learnable differentiable functions [16, 39, 43]:

(1) The function 𝜌 constructs a message𝑚𝑣𝑢 from the current

node features ℎ𝑣 , the node features ℎ𝑢 from the neighboring

nodes N(𝑣) and edge features ℎ𝑒𝑣𝑢 of the edges pointing to

the current node from its neighbors.

𝑚
(𝑙)
𝑣𝑢 = 𝜌 (𝑙) (ℎ (𝑙)𝑣 , ℎ

(𝑙)
𝑢 , ℎ

(𝑙)
𝑒𝑣𝑢 ) for 𝑢 ∈ N (𝑣) (2)

(2) The aggregation function 𝜁 takes an input {𝑚 (𝑙)
𝑣𝑢 |𝑢 ∈ N (𝑣)},

where 𝑚𝑣𝑢 ∈ R𝑑 , is an unordered message tuple. It then

generates an aggregated message𝑚𝑣 ∈ R𝑑 .

𝑚
(𝑙)
𝑣 = 𝜁 (𝑙) (𝑚 (𝑙)

𝑣𝑢 |𝑢 ∈ N (𝑣)) (3)

To be well defined 𝜁 must be permutation invariant. Hence,

popular aggregation functions, for instance, include themean,

max and sum functions [16, 19, 43].

(3) The function 𝜙 combines the current node features ℎ𝑣 with

the aggregated message𝑚𝑣 to finally generate the updated

node features.

ℎ
(𝑙+1)
𝑣 = 𝜙 (𝑙) (ℎ (𝑙)𝑣 ,𝑚

(𝑙)
𝑣 ) (4)

Recent research has indicated that different generalized aggre-

gation functions work better for different tasks. We build on the

aggregation layers GENConv introduced by Li et al. [20] that im-

prove the performance on diverse GCN tasks and scale well with

large graph topologies.

Based on these layers, we construct a graph-variational autoen-

coder (GVAE) similar to Kingma and Welling [18]. This GVAE con-

sists of an encoder and decoder model. While the former embeds the

input in a latent space using a Gaussian distribution model parame-

terized by mean 𝜇 and standard deviation 𝜎 , the latter reconstructs

the embedded input from a latent Gaussian distribution:

𝑝 (𝑧 |ℎ (𝐿) ) = N(𝑧 |𝜇, 𝜎2) { 𝑍 = 𝜇 + 𝜎𝜖, 𝜖 ∼ N(𝜖 |0, 1) (5)

Here ℎ (𝐿) is the latent embedding generated by the encoder as

in Equation (4) for the final layer 𝐿. When training a variational

autoencoder, the objective function not only minimizes the recon-

struction loss but also maximizes the likelihood of the data by

minimizing the Kullback-Leibler divergence between the true la-

tent posterior distribution 𝑝 (𝑧 |𝑥) and the estimated latent posterior
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distribution 𝑞(𝑧 |𝑥). The combined loss is given by

L = L𝑟𝑒𝑐𝑜𝑛𝑠𝑡 + L𝑘𝑙 . (6)

In our setting, the GVAE is trained to reconstruct node and edge

features, while respecting the discrete topology of the graph. Since

the collaboration graph is heterogeneous and contains different

node types, all node features are first zero-padded to a common

feature dimension𝑑 ′ and then passed through a single feed-forward
network, resulting in a new homogeneous node feature vector of

size 𝑑 = 128. Similarly, we pass the zero-padded edge features

with dimension 𝑘 ′ through a single feed-forward network to ob-

tain a new edge feature vector of size 𝑘 = 128. Since in the GNN

context, features are expected to have the same meaning in all fea-

ture dimensions, zero-padding alone is generally discouraged. As

a remedy, we project all node and edge features onto a common

lower-dimensional space [17].

In summary, the GVAE creates a latent representation character-

izing the entire structure of the graph that later serves as the basis

for modeling normality and spotting unusual activities.

3.4 Anomaly Detection on Nodes
We are finally ready to use the encoder of the GVAE to analyze and

detect anomalies in collaboration graphs. In fact, it enables us to

obtain embeddings for all nodes of the collaboration graphs and to

apply a one-class learner just as if the data were Euclidean. Before

presenting our semi-supervised learner in Section 3.4, we start with

a simpler unsupervised version of it.

One-class learning. There exists a large variety of approaches for

anomaly detection. For our approach, we focus on a recent model

called Deep Support Vector Data Description (Deep SVDD) proposed

by Ruff et al. [29]. In contrast to other approaches, this model

provides excellent detection performance in experimental settings

and can be easily extended to support semi-supervised learning,

enabling a calibration using synthetic anomalies [29].

Deep SVDD is a two-stage model, where in the first stage an

autoencoder (AE) is trained on vector-spaced data. The weights of

the AE are then used to initialize the weights W of a neural net-

work 𝜙 . Moreover, a center 𝑐 is set as the mean of the outputs. After

training, the anomaly score corresponds to the distance between

the embedding and the center. This detection works by training a

neural network that minimizes the volume of a hypersphere, which

encloses the network’s representation of the data [36]. For an input

space X ⊆ R𝐷 and output space Z ⊆ R𝑑 , the objective of Deep
SVDD can be written as minimizing:

L(W) = 1

𝑁

𝑁∑︁
𝑖=1

∥𝜙 (𝑥𝑖 ;W) − 𝑐 ∥2 + 𝜆

2

𝐿∑︁
𝑙=1

∥𝑊 𝑙 ∥2, 𝜆 > 0 (7)

Here the function𝜙 (· ;W) : X → Z denotes a neural network with

𝐿 layers and weightsW = {𝑊 1, . . . ,𝑊 𝐿} and 𝑐 is the center of the
hypersphere. The second term is a regularization. This objective

function will try to minimize the distances for normal nodes and

thus these will lie close to the center [29].

Semi-supervised one-class learning. The Deep SVDD model can

be easily extended to incorporate a few labeled anomalies during

optimization, yielding a semi-supervised learner [28]. To this end,

the training data of size 𝑁 is split into 𝐵 labeled and𝑈 unlabeled

samples. We re-label the labeled ones as 𝑌 = −1, +1, where 𝑦𝑣 = +1
denotes a labeled normal sample while 𝑦𝑣 = −1 denotes a labeled
anomalous sample. Semi-supervised learning enables us to guide

the learning process towards characteristics of the graphs relevant

for spotting anomalies, such as spatial and temporal relations.

In turn, the objective function of the semi-supervised learner

can then be rewritten as follows

L(W) = 1

𝑈 + 𝐵

𝑈∑︁
𝑢=1

∥𝜙 (𝑥𝑢 ;W) − 𝑐 ∥

+ 𝜂

𝑈 + 𝐵

𝐵∑︁
𝑏=1

∥𝜙 (𝑥𝑏 ;W) − 𝑐 ∥𝑦𝑏 + 𝜆

2

𝐿∑︁
𝑙=1

∥𝑊 𝑙 ∥2 .

(8)

The first term for unlabeled samples is similar to Deep SVDD.

However, the loss term for the labeled nodes is weighted by the

hyperparameter 𝜂 > 0 controlling the balance between both terms.

𝜂 > 1 gives more importance to the labeled samples while 𝜂 < 1

puts more emphasis on the unlabeled ones. Within the labeled data,

a distance of labeled normal instances i.e. 𝑦 = +1 is minimized to

the center. For labeled anomalous samples 𝑦 = −1, we penalize the
inverse of distances thus mapping those away from the center [28].

Combining with the GVAE. We have seen in Section 3.3 how to em-

bed the nodes of collaboration graphs in a Euclidean latent space.

Now in the second stage, the decoder of the GVAE is replaced by

a classifier that minimizes the distances from normal embeddings

to the center and maximizes the distances between anomalous

nodes and the center. After training the GVAE and retrieving the

latent embeddings 𝑍 , we compute the center 𝑐 as the mean of the

embeddings obtained from the first stage of the GVAE. These are

then used to train the hypersphere classifier through backprop-

agation using the aforementioned objective Function (8), where

𝜙 (· ;W) : X → Z is modeled by the GVAE encoder. The resulting

semi-supervised one-class learner is finally trained end-to-end as

depicted in Figure 3.

In summary, the idea of our learning model is to minimize the

distance to the center for the embeddings of normal nodes and

maximize the distance to those of anomalous nodes. The inferred

distances to the center can then be used as anomaly scores per node

and identify backdoors injected into the repository.

4 DATASETS
To investigate the detection performance of our approach, we in-

troduce a dataset extracted from public Github repositories.This

dataset is composed of two curated collections of repositories: The

first collection is a training corpus augmented with synthetic anom-

alies for calibrating our approach, while the second partition is

comprised of real-world backdoors found in Git commits and used

for measuring the detection performance under realistic conditions.

4.1 Training and Calibration Corpus
To construct a dataset for training and calibrating our method, we

follow the experimental setup of Gonzalez et al. [12]. In particular,

we retrieve 90 repositories from Github with a majority associated

with Node Package Manager (NPM) packages with at least 100
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Figure 3: Our neural network architecture for anomaly de-
tection in collaboration graphs.

Table 1: Statistics of training and calibration corpus.

Developers Commits Files Methods Anomalies

Mean 99 839 754 1957 555

Stdev 139 1150 2021 3855 664

Max 982 8105 15281 24657 2308

Median 54 389 187 404 301

Min 3 123 10 3 6

commits [12]. The statistics for the collected repositories can be

seen in Table 1.

Since our semi-supervised learner needs to be calibrated, it is

necessary to apply a handful of labeled data to calibrate the center 𝑐 .

Using the sparsely available real backdoors for this calibration could

lead to overfitting and over-optimistic results. Hence, we apply a

data augmentation strategy by injecting artificial anomalies into

the repositories to enable the model to detect unusual activities in

the collaboration graph. Note that these artificial anomalies are not

representative of all possible anomalies. Yet they serve as a refer-

ence for calibrating our approach. Compared to a fixed manually

curated rule-set, this approach significantly reduces bias. We define

five types of anomalies that deviate from normal commits through

perturbations of the structure and attributes of the collaboration

graph similar to the work by Ding et al. [5].

Type 1: Spoofed authorship. The first artificial anomaly type simu-

lates malicious actors who purposefully manipulate the authorship.

It is crafted by copying a commit along with its method and file

nodes to the head of the repository. Developers are randomly con-

nected to this new commit.

Type 2: Spoofed topology. This anomaly type helps the model to

focus on the structural properties of a commit and enables it to

maintain a coherent view of a repository. We create a copy of a

commit and replace all of its nodes’ features with features from

randomly picked commit nodes from the same repository. Both the

commit to be copied and the one replaced are selected uniformly

at random. The edge features of the new commit remain unchanged.

Type 3: Spoofed time features. The third anomaly type simulates

malicious actors who purposefully manipulate the commit-date

information. We create a copy of a commit and only replace the

node features derived from timestamp information with the time

features from a randomly picked commit of the same repository.

Both the commit to be copied and the one replaced is selected ran-

domly. Edge features of the commit remain unchanged.

Type 4: Spoofed message. This anomaly type will help the model

to detect semantic discrepancies between the communicated inten-

tion and the actually introduced changes of a commit. We create a

copy of a commit and replace only the word2vec embedding derived

from the commit message with a randomly picked commit from

the same repository. Both commits are selected randomly.

Type 5: Spoofed numerical features. The final anomaly type helps

the model to establish a link between numerical and structural

features and to learn a relationship between the preceding and

subsequent commits. We randomly select a node and replace its

features with those of the node that has the largest distance to it.

The types of both nodes need to be the same, for instance, a commit

can only be swapped with another commit, a file only with another

file and so on.

We include these five types of anomalies in the 90 collected

Github repositories to create a training and calibration corpus. The

number of injected anomalies forms another parameter subject to

optimization. A large relative number of anomalies will cause the

model to overfit to the synthetic data, while conversely, a too-small

number will cause the model to largely ignore the anomalous data.

Consequently, we determine the optimal ratio of anomalies from

{0.1%, 0.5%, 0.8%, 1%, 1.5%, 2%, 3%} by investigating the detection

performance on the training corpus.

4.2 Testing Corpus
To evaluate our approach under realistic conditions, we introduce a

testing corpus. We retrieve 19 Github repositories containing nine

different types of software backdoors. The statistics of the collected

repositories are reported in Table 2.

Table 2: Statistics of testing corpus.

Developers Commits Files Methods

Mean 18 269 320 632

Stdev 23 637 675 1588

Max 80 2295 2778 6783

Median 3 25 33 72

Min 1 1 8 2

One repository contains the PHP backdoor shown in Listing 1

and five repositories contain a backdoored node-js NPM module.

Another two commits refer to the Gentoo and Systemd repositories,

that were compromised in 2018
2
leading to several maliciously

placed commits. Lastly, we identified several Github repositories

2
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-

28_Github
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infected by the malware Octopus Scanner3. This malware abuses a

compromised host to search for NetBeans projects where it includes

a copy of itself. It infects jar files, disguises itself as cache.dat and

instruments the NetBeans configuration to execute itself whenever

a developer builds the project. Interestingly, the malware thereby

enters commits of the developed software and hence resembles

another variant of a software backdoor.

5 EMPIRICAL EVALUATION
We proceed to empirically evaluate the detection performance of

our approach on the collected datasets. We use three baselines

to compare our approach: a “shallow” one-class support vector

machine (One-class SVM), a statistical approach by Goyal et al. [14]

and a rule-based approach by Gonzalez et al. [12] for detecting

anomalous commits.

5.1 Experimental Setup
Before presenting the results of our evaluation, we first introduce

the experimental setup for our approach and the three baseline

methods. In addition, we describe implementation details for the

different detection methods that help to reproduce the experiments

and expand our methodology.

Setup of our approach. We train the semi-supervised one-class

learner described in Section 3 using the training corpus on all

90 repositories with an injection rate of 2% for each anomaly type.

We normalize the overall distances and use one standard deviation

as the threshold for the commits to be labeled anomalous. Using

a hyperparameter optimization on a 70/30 validation split on the

training corpus, we choose a learning rate of 0.001 for the GVAE

and a learning rate of 0.01 for the one-class learner. Both compo-

nents are trained using the ADAM optimizer with a training batch

size of 128 graphs and an 𝜂 of 0.75.

One-class SVM. We compared several further baselines on the ar-

tificial anomalies with three-fold cross-validation. As depicted in

Table 4, the one-class SVM baseline achieves the best results and

builds on a popular shallow-learning strategy for anomaly detec-

tion. The one-class SVM is trained using all 90 repositories and then

tested on the dataset containing the real backdoors. Compared to

our model, the SVM does not consider the graph structure, however,

it uses the same pre-processed features and thus can also spot some

types of anomalies in the data.

Table 4: Comparison of different baselines.

Model AUC-Score

One-class SVM 0.70 ±0.04
Deep-SVDD 0.61 ±0.13
Local Outlier Factor 0.53 ±0.00
Elliptic Envelope 0.50 ±0.00
Isolation Forest 0.49 ±0.09

Rule-based detection. As the second baseline, we implement the

rule-based approach called Anomalicious by Gonzalez et al. [12].

3
https://securitylab.github.com/research/octopus-scanner-malware-open-source-

supply-chain/

The approach uses commit logs and repository metadata to au-

tomatically detect anomalous and potentially malicious commits.

This detection is conducted using a comprehensive set of manu-

ally engineered detection rules. Unfortunately, the authors do not

provide their source code. Hence, we re-implement these rules and

publish the reproduced code with this paper for future research.

The method uses thresholds fixed in a specific optimization pro-

cedure: Each threshold is selected by flagging a minimum amount

of commits but at least one as anomalous. The authors optimize

these hyperparameters on a set of 100 repositories. We could only

obtain 90 of them, as some of the considered repositories are not

available on Github anymore. However, our dataset is similar in

size and structure and our testing corpus comprises more recent

backdoors.

Statistical detection. As the third and last baseline, we employ the

Unusual Commit Detector by Goyal et al. [14]. Their approach builds
a distribution over past commit features including the commit

message lengths, times, changed files and their respective file types.

By modeling such distributions they are able to infer ownership of

files and detect statistical outliers solely by looking at the commit’s

past metadata. We stick to their original implementation
4
. Using

this approach, a commit property is considered unusual if it deviates

from at least 90% of the features of past commits. The feature scores

are averaged to obtain a single threshold.

We implement the commit extraction for all models using Py-

Driller [24] and the GitHub Rest API [11]. Our GVAE and hyper-

sphere classifier model are implemented on top of Pytorch Geomet-

ric [25]. We run our experiments on AWS EC2 g4dn instances with

CUDA optimization enabled. All experiments are repeated 16 times

with different seeds.

Performance Measures. We compare the models using the true-

positive rate (TPR) and false-positive rate (FPR) over the number

of commits per repository. The true-positive rate indicates the suc-

cessfully flagged anomalies, while the false-positive rate measures

the benign commits that are flagged as anomalous. The base models

of Gonzalez et al. [12] and Goyal et al. [14] classify only commits,

unlike our model, which can detect anomalies in any type of node.

For a better comparison, in our experiments, we thus focus on

anomalous commit nodes. The distances of other node types tran-

sitively contribute to the commit node’s distance since our model

uses the message passing aggregation scheme. We further calculate

the macro-average as the false positives per repository averaged

over all 19 repositories and the micro-average as the false positives

weighted by the number of commits per repository. The Receiver

Operating Characteristic curve gives a notion about the true pos-

itive and false positive rate, hence we calculate the Area under

Receiver Operating Characteristic (AUROC) when classifying all

node types.

5.2 Detection Performance
To provide an intuition for the difficulty of detecting anomalous

commits, we start by first looking at the performance of our ap-

proach on the training corpus. Our detection method yields a mean

AUROCof 0.859±0.02, a TPR of 0.883±0.06 and an FPR of 0.220±0.17
4
https://github.com/goyalr41/UnusualCommitExtension
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Table 3: The detection performance of our approach and the baselines on the testing corpus.

Repository ( https://github.com/) Commits Type Gonzalez et al., 2021 One-class SVM Goyal et al., 2018 Our Model
Found? FPR (%) Found? FPR (%) Found? FPR (%) Found? FPR (%)

1 atom-minimap/minimap 2,295 CWE-912 Backdoor Injection ✗ 3.53 ✗ 56.50 ✓ 15.23 ✗ 0.13

2 greatsuspender/thegreatsuspender 1,536 CWE-512 Backdoor Injection ✗ 5.08 ✗ 8.81 ✗ 4.18 ✗ 1.10

3 gentoo/gentoo (25.06.2018 to 29.06.2018) 1,284 CWE-511 Malicious Code ✗ 9.28 ✓ 39.01 ✗ 6.02 ✓ 3.23

4 RIAEvangelist/node-ipc 406 CWE-511 Malicious Code ✗ 17.28 ✗ 8.33 ✗ 7.01 ✗ 2.04

5 php/php-src (15.03.2021 to 15.04.2021) 390 CWE-510 Backdoor Injection ✓ 25.00 ✗ 1.28 ✗ 0.00 ✓ 8.25

6 dominictarr/event-stream 322 CWE-912 Backdoor Injection ✗ 13.71 ✓ 100.00 ✗ 10.04 ✓ 0.90

7 Marak/colors.js 259 CWE-511 Malicious Code ✗ 6.43 ✗ 3.12 ✗ 5.04 ✗ 4.20

8 gentoo/systemd (25.06.2018 to 29.06.2018) 91 CWE-511 Malicious Code ✓ 7.78 ✗ 4.11 ✗ 6.02 ✓ 7.12

9 TesyarRAz/KeseQul-Desktop-Alpha 35 CWE-507 Malware ✗ 5.88 ✓ 100.00 ✗ 29.41 ✓ 55.88

10 SebasR16/BdProyecto 15 CWE-507 Malware ✓ 0.00 ✓ 100.00 ✗ 7.14 ✓ 71.43

11 Sliray/Secuencia-Numerica 7 CWE-507 Malware ✓ 66.67 ✓ 100.00 ✓ 16.67 ✓ 50.00

12 KosimCorp/RatingVoteEPITECH 5 CWE-507 Malware ✗ 25.00 ✓ 100.00 ✗ 20.00 ✓ 0.00

13 george-bennett/V2Mp3Player 5 CWE-507 Malware ✗ 0.00 ✓ 100.00 ✓ 0.00 ✓ 0.00

14 KosimCorp/Kosim-Framework 1 CWE-507 Malware ✗ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

15 SebasR16/Punto-de-venta 1 CWE-507 Malware ✓ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

16 BarbosaO/2D-Physics-Simulations 1 CWE-507 Malware ✗ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

17 SierraBrandt/GuessTheAnimal 1 CWE-507 Malware ✗ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

18 callmehetch/PacmanGame 1 CWE-507 Malware ✗ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

19 FelixGtz99/ProyectoGerundio 1 CWE-507 Malware ✗ 0.00 ✓ 0.00 ✗ 0.00 ✓ 0.00

Summary 6, 656 5/19 13/19 3/19 15/19
Macro-Average 9.77 37.95 6.68 10.75

Micro-Average 3.96 24.57 6.97 0.70

for the anomaly detection task on the synthetic dataset with in-

jected anomalies. We observe that the model performs very well in

detecting Anomaly Type 1 and 5. We assume that these anomaly

types are too trivial for the model to distinguish from normal com-

mits. Since Anomaly Type 1 was developed specifically to detect

tampering with authorship, we conclude that the model is capable

of inferring ownership of files and methods. For example, whether

a contributor was the one who created a file or method and whether

she was the only one who touched it in the past. Type 5 randomly

swaps two maximally distant commits, indicating that the model

is able to associate node features with their topological properties.

Type 4 is the worst-performing anomaly type, where the model de-

tects the fewest anomalies with only 65% accuracy. This shows that

linking natural language with surrounding features is difficult. We

conclude that the synthetic anomalies are sufficiently diverse for

calibrating our model and thus proceed to inspect its performance

on the testing data.

Comparison with Gonzalez et al. [12]. In Table 3 we present the 19

real backdoors found in public Git repositories. The projects are

sorted by their number of commits. The PHP, Gentoo and systemd
samples were taken over a smaller time frame since the repositories

are fairly large and each commit potentially touches hundreds of

files. In the table, we can see that our model detects 15 out of

19 backdoors, compared to the baseline from Gonzalez et al. [12],

which only detects 5 out of 19. Overall, ourmodel shows a lower FPR

averaged over the 6656 commits, however, a higher FPR averaged

over the 19 projects.

Both models detect a maliciously placed piece of code in the

systemd repository
5
. The commit says that the configure script

has been fixed, but when run by an innocent developer, her home

directory is deleted. The commit is highly suspicious because the

committer has never committed to the repository before and, on

top of that, he manipulated a rarely touched file. The baseline by

5
https://github.com/gentoo/systemd/commit/50e3544d

Gonzalez et al. [12] fails to detect several Octopus Scanner reposi-

tories, while they are all detected by our model. The projects with

the injected backdoors are harder to detect, however, both models

found the recent PHP backdoor at the cost of a high (25%) FPR for

the baseline whatsoever. Our model also detects a malicious commit

in event-Stream6
with a low (0.9%) FPR. In this commit, an unnec-

essary and malicious dependency was introduced capable to steal

the developer’s Bitcoin wallet’s private keys. Just as for Gonzalez

et al. [12], we can observe a lower FPR with an increasing number

of commits per project. This makes sense since larger projects offer

more information to the inference process.

Comparison with Goyal et al. [14]. We further compare our model

against the statistical approach by Goyal et al. [14]. Their model

only reports 3/19 anomalies correctly. Using their approach with

deviating nominal features, they achieve the lowest macro-average

FPR. Unfortunately, their tool is not able to reason about initial

and merge commits, making it unsuitable for the comparison of

the single-commit-repositories infected with the Octopus Scanner.

Our model is able to check initial commits since we pre-train it on

a large training corpus. This way, we are able to reason about one

repository using the knowledge inferred from others.

Both models detect the Octopus Scanner in the V2Mp3Player and
Secuencia-Numerica repositories. Goyal et al. [14] even reports a

lower FPR for the latter. Considering repository Secuencia-Numerica,
their tool explains the outlier because more LoC than 90% of the

other commits were changed, only 0.3% other commits added more

LoC and more files were touched than 90% of the other commits.

The most important identification however is, that .dat files were

changed and such files are rarely changed in the repository with

less than 2% of all touched file types. The last explanation involves

the Octopus Scanner itself, however, only in combination with

the other unrelated anomalous properties, the commit could be

flagged. Furthermore, in 2017, advertising popups were injected

into the open-source softwareminimap. Goyal et al. [14], in contrast
6
https://github.com/dominictarr/event-stream/commit/e316336
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Figure 4: Robustness is measured as the drop in the AUROC score for increasing graph perturbations.

to our model, detects this. The explanation is that this particular

commit touches .js and .less files in conjunction which happens

rarely in this repository. The .less file is associated with the popup

banner’s style sheet for the injected advertisement. The baseline

fails to detect other malicious commits, however, it pertains to an

overall low FPR.

Comparison with one-class SVM. In Table 3 we can also see that the

one-class SVM beats the rule-based and statistical model measured

by the detection rate. However, the false-positive rate is nearly 400%

as high as compared to the rule-based model. For instance, relying

on the one-class SVM, a security practitioner would need to review

more than half of the minimap repository and still would not find

the actual malicious commit. Furthermore, the model collapses for

graphs with fewer commits, since from repository 9 to 19 every-

thing is labeled as anomalous. The FPR decreases starting with the

systemd repository at around 90 commits. Since the baseline builds

upon the same feature set as our method, we conclude that the

graph structure is fundamentally important for spotting malicious

commits in the version history of software projects.

5.3 Robustness against Adversaries
Additionally, we measure the robustness of our approach. On the

one hand, we want to show to what extent the graph topological

structure influences anomaly detection and on the other, we want

to assure that an adversary with knowledge of our model needs to

put in some effort to evade it.

Measuring the resiliency against potential adversaries is hard and

to avoid introducing any bias, we stick to an approach byWarnecke

et al. [40]. We evaluate the model’s robustness by removing random

clean and malicious nodes from the collaboration graphs to observe

whether the model is still able to detect the anomalies.

We measure the AUROC to examine how well the model per-

forms when commits are perturbed until they deviate from the

learned distribution in Figure 4. Further, we observe how much

a malicious commit has to be perturbed until the model fails to

detect it. Practically speaking, a potential attacker would first craft

a malicious commit and then, to evade detection, decrease the dif-

ference in appearance to the past clean commits in the repository.

We simulate this by dropping nodes until the difference between

the structural properties of the clean commits and the deviating

commit vanishes and therefore is harder to distinguish.

A downward trend indicates that noise and manipulations in the

graph structure affect the model more. Conversely, a constant or

upward trend hints that the model is robust against graph pertur-

bations. Since most nodes in a collaboration graph are benign, their

removal results in a lower number of false positives, leading to an

upward trend. A drop rate of 100% removes nodes from all types

with the only exception of the commit nodes. We also report the

mean AUROC for each graph averaged over all perturbations for

16 runs. Each graph is numbered and corresponds to the respective

project from Table 3.

The first two plots from the left show the model’s performance

for the collaboration graphs of the first eight larger repositories,

presenting a downward trend with increasing drop probability.

Apart from the noise, the curves from the smaller collaboration

graphs on the two right plots show a slight upward trend. Graph 11

is an outlier since it presents an upward trend starting from an

initial low AUROC. Since this graph already induces as much as

50% FPR and removing nodes consequently also removes FPs. The

legend shows that the larger repositories have an overall higher

AUROC score than the repositories with fewer commits. We further

observe that the model is robust against graph manipulations for

the smaller projects and slightly less robust for the larger projects

containing real malicious commits. This could be due to the fact,

that with only a few commits (< 35) present in the repository,

the model prioritizes the node features over the graph structure.

Moreover, the graph structure has a greater influence on themodel’s

decision for repositories with more (> 100) commits.

5.4 Interpretability
Figure 5 depicts a repository

7
augmented with synthetic anomalies.

Each dot represents a node in the collaboration graph, while the plot

is divided up into four sections. On the left, the nodes belong to the

developer, followed by the commits and finally, the darker shaded

sections represent the nodes belonging to the category of files and

methods. Blue dots represent nodes found in the original repository,

while different colored nodes represent different anomaly types.

7
https://github.com/aspnet/SignalR
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For visualization purposes, we remove the anomaly types that are

too trivial to detect, that is, Type 1 and Type 5.

The figure shows each node with its associated distance to the

center. Most injected anomalies are further away from the center,

while the majority of normal nodes are placed within a distance

of around 0.7 to the hypersphere center. This can be attributed to

the fact that certain anomalies are hardly distinguishable from the

normal nodes and by Equation (8) they tend to pull their entire

neighborhood away from 𝑐 . A security practitioner can easily create

such plots and examine the nodes that have been placed outside

the border of the hypersphere. For example, in Figure 6, we present

an exemplary false-positive commit extracted for further investi-

gation from Figure 5. The commit refers to a merge commit
8
. For

visualization purposes, we substitute the file, method and devel-

oper names. The graph structure reveals that the anomalous (red)

commit node has two parents and thus represents a merge commit.

Although the graph does not expose any malicious intent from the

developer, it, however, shows that changes only from one of its two

parent commits were merged, ignoring the files and methods from

the other. This does not pose any anomaly in a security-critical

sense, however, it is an unusual development behavior and should

be examined anyhow.

Moving on with the analysis of our testing data, we can easily

analyze the samples in the same way for, e.g., detecting the PHP

backdoor. The model identifies the subsequent commit
9
, which

also constitutes a backdoor, with one standard deviation distance

to the center 𝑐 . The commit is unsigned, thus, the impersonated

author Nikita Popov of the second backdoor has attributed a dis-

tance of three standard deviations to 𝑐 . The file zlib.c containing

the backdoors from Figure 1 and the subsequent backdoor, has a

standard deviation of two. Overall the model flags both commits

8
https://github.com/aspnet/SignalR/commit/7de91da

9
https://github.com/php/php-src/commit/2b0f239

Di
st
an
ce
s 

  

    
  

Nodes 

e e Normal 

. e Anomalous 2 

e Anomalous 3 

° e Anomalous 4 

e 
e e 

ee © e oo 
e e ° % 6 

. %. oe «CS 
e ee e 

e - e 

. e e ° 
e ee e 

© e 

e 

p e ee e 

[ weal, : 
i * . a” : e . Se . e 
e ee oo e e 

° *~ . *, “ee * 6 3 ° e 
e e3 A . 

je e é e a e ee? 

nee @, <8, a ° e "teh. 2, °, . ¢ 

Maen Sania fa 

0 100 200 300 400 500 600 700

Figure 5: Visualizing anomalous nodes in a collaboration
graph (developers, commits, files, methods).

b77f50a

7de91da

52f2104

Master

FileA FileB FileC

MethodA MethodB MethodC

Dev

Figure 6: Collaboration graph labeled as false positive.

as anomalies. The Octopus Scanner repositories are detected ac-

cording to their cache.dat similar to the approach by Goyal et al.

[14]. The backdoor in event-stream, for instance, is found due to the

modification in the package.json with a distance of three standard

deviations to 𝑐 . The backdoors in Minimap and Thegreatsuspender
were intentionally planted by the maintainer, leading our model to

have low confidence for suspecting the author node.

5.5 Practicability
Although code reviews seem to be a solution against supply chain

attacks, Rigby et al. state that many contributions to open source

software (OSS) do not receive any review at all. Attention from

the community is a sparse resource and not every commit might

receive the attention it needs [27]. Since reviewing each commit

thoroughly might be too costly and never reviewing a commit too

risky, we suggest to deploy our model to pre-filter commits that

might need stronger attention. Inspired by the work from Saidani

et al. [31] we can impose a cost model to help us decide when our

detection model is practicable.

We use the conventional terminology for describing the quality

of the models using true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN). Furthermore, we assume

that there is a cost 𝑟 for reviewing a single commit and a cost 𝑑 if a

malicious commit sneaks through. Clearly, the cost the review is

much lower than the cost for an undetected backdoor, hence 𝑟 ≪ 𝑑 .

Still, both 𝑟 and 𝑑 might be calculated as some form of financial

cost, for example, person-hours.

Cost models. We proceed to define three theoretical cost models

to analyze the utility of our approach and the baselines methods.

We start with the cost model for a detection method:

costDetect = 𝑟 · (𝐹𝑃 +𝑇𝑃) + 𝑑 · 𝐹𝑁
Alternatively, one might also review every commit in a software

repository. In this case, no detection method is needed and we

arrive at the following cost model:

costAlways = 𝑟 · (𝐹𝑃 +𝑇𝑃 + 𝐹𝑁 +𝑇𝑁 )
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Table 5: Cost comparison 𝑟
𝑑
(in %) for the models against two

baseline strategies.

Model Beats Always Beats Never

Our Model > 0.06 < 24.21
Gonzalez et al. [12] > 0.22 < 1.87

Goyal et al. [14] > 0.10 < 0.64

Finally, we can ignore the risk of software backdoors and simply

never review any commit in a repository. In this case, we obtain

the following cost model:

costNever = 𝑑 · (𝐹𝑁 +𝑇𝑃)
By putting these cost models in relation, we can construct bound-

ary conditions that help us assess the utility of detection methods.

First, it follows that we have costDetect < costAlways if:
𝑟

𝑑
>

𝐹𝑁

𝐹𝑁 +𝑇𝑁 false omission rate (FOR)

Similarly, we can construct a boundary for not reviewing, and we

get costDetect < costNever if:
𝑟

𝑑
<

𝑇𝑃

𝐹𝑃 +𝑇𝑃 positive predictive value (PPV)

Note that both the false omission rate and the positive predictive

value are monotonically increasing in terms of the fraction of real

positive cases (actual flaws) in the data, i.e. the prevalence.

Cost analysis. Taking the empirical results for each detection

method from Table 3 we get the following values for the cost models:

𝐹𝑃 = 47, 𝑇𝑃 = 15, 𝐹𝑁 = 4 and 𝑇𝑁 = 6590. Since we have two

boundary conditions we can explicitly calculate the threshold
𝑟
𝑑
for

all models against both baseline strategies. As depicted in Table 5,

our approach outperforms costAlways if 𝑟
𝑑

< 0.06% and we beat

costNever if 𝑟
𝑑
< 24.21%. Moreover, our model has a large favorable

range compared to the baseline models by Gonzalez et al. and Goyal

et al. [12, 14], making it practicable in more situations. Only if the

cost of an review compared to that of an undetected backdoor is

really high Never review any code is a promising strategy. On the

other hand,
𝑟
𝑑
must be very low in order to make reviewing Always

a winning strategy over our learning-based approach.

To put this analysis in context, let us consider this hypothetical

example: Suppose that the cost of reviewing a commit in a software

project is 2 person-hours. According to recent statistics from the

UK, an average data breach costs ∼ 1400 USD
10

while the average

developer might cost 25 USD per hour
11
. Hence, we have

𝑟
𝑑
= 3.57%

which is well inside the boundaries calculated above and hence our

approach is better than both baseline strategies. Moreover, since

3.57% exceeds both 1.87% and 0.64% the other models are more

expensive than the Never strategy and therefore not practicable.

Concluding, our model is the preferable choice compared against

the two other baseline models by Gonzalez et al. and Goyal et al.

[12, 14] under practical conditions.

10
https://www.statista.com/statistics/586788/average-cost-of-cyber-security-

breaches-for-united-kingdom-uk-businesses/

11
https://uk.talent.com/salary?job=software+engineer

6 RELATEDWORK
Anomalies can be defined as observations in the data that do not

conform to expected behavior. Anomaly Detection refers to the

task of finding such observations [3]. Several works have been

conducted to detect anomalies in graph-based datasets, for instance,

the work by Ding et al. [5], Liu et al. [22] or Dou et al. [7], all

leverage graph neural networks with promising results.

Some significant work has already been done concerning vul-

nerability detection on code graphs. A GNN-based model beating

popular non-learning and non-graph-learning-based static analyz-

ers is used by Zhou et al. [44] for graph-level classification using

manually labeled real-world datasets. It has been demonstrated by

Chakraborty et al. [2] that the effectiveness of the state-of-the-art

deep learning-based vulnerability detection models significantly

deteriorates when applied to unseen real-world datasets. Some pit-

falls in learning-based vulnerability detection models are identified

by Arp et al. [1], where they also suggest possible remedies.

Collaboration graphs have been already subject to analysis in

conjunction with graph-based machine learning. Collaboration

graphs were introduced by GraphRepo [15] to enable developers to

efficiently query through commits using graph databases. Geiger

et al. [9] mine commit graphs with additional metadata from an-

droid project repositories and further introduce a large collabora-

tion graph dataset. Dong [6] use graph neural networks to learn

commit representations to suggest meaningful commit messages

based on the proposed code changes. Similarly, Shen et al. [34]

decompose commit graphs based on the coherence of the under-

lying changes. None of these approaches, however, focuses on the

detection of backdoors in the graphs.

To counteract the impersonation of authors and to easier detect

maliciously crafted commits, Git allows signing off commits by

their respective authors
12
. Torres-Arias et al. introduce a security

scheme on top of Git to evade metadata tampering in Git reposi-

tories when several developers work on conflicting views of the

repository [38]. Li et al. and Feldman et al. enable developers to

sign off the state of a repository enforcing fork-consistency on

potentially untrusted servers [8, 21]. All these techniques provide

overhead to either the infrastructure or the collaboration workflow.

We offer an orthogonal approach to detect anomalous commits

without interfering with Git.

7 CONCLUSION
In this work, we show that current methods for detecting anomalies

in Git commits are inadequate. These models are driven by manu-

ally created rules that limit detection capabilities, generalization

and introduce significant bias into empirical evaluations in their

respective works.

In contrast, we port a popular architecture for unsupervised

anomaly detection to the graph-learning domain. Using recent

advances in graph neural networks and unsupervised outlier de-

tection, we can leverage collaboration graphs to detect anomalous

commits. By modeling project repositories as collaboration graphs,

we can analyze new properties that arise from their topological

structure. For example, such graphs reveal common collaborations

between developers, files and methods that are frequently modified

12
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work



CODASPY ’23, April 24–26, 2023, Charlotte, NC Tom Ganz, Inaam Ashraf, Martin Härterich, and Konrad Rieck

together, or commits that influence other commits. Instead of man-

ually curated rules, we rely on a loose set of artificial anomalies to

calibrate an unsupervised model.

Our model outperforms current state-of-the-art models while

being able to detect not only anomalous commits, but also files,

methods, and suspicious developers. In this work, we show that

our model is robust, interpretable, practicable and capable of de-

tecting notable past malicious supply chain attacks, for example,

the backdoor introduced to the PHP repository in 2021 or recently

compromised NodeJS packages.
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