
Explaining Graph Neural Networks for Vulnerability Discovery
Tom Ganz

tom.ganz@sap.com

SAP SE – Security Research

Germany

Martin Härterich

martin.haerterich@sap.com

SAP SE – Security Research

Germany

Alexander Warnecke

alexander.warnecke@tu-bs.de

TU Braunschweig

Germany

Konrad Rieck

konrad.rieck@tu-bs.de

TU Braunschweig

Germany

Abstract
Graph neural networks (GNNs) have proven to be an effective

tool for vulnerability discovery that outperforms learning-based

methods working directly on source code. Unfortunately, these

neural networks are uninterpretable models, whose decision pro-

cess is completely opaque to security experts, which obstructs their

practical adoption. Recently, several methods have been proposed

for explaining models of machine learning. However, it is unclear

whether these methods are suitable for GNNs and support the task

of vulnerability discovery. In this paper we present a framework

for evaluating explanation methods on GNNs. We develop a set

of criteria for comparing graph explanations and linking them to

properties of source code. Based on these criteria, we conduct an

experimental study of nine regular and three graph-specific expla-

nation methods. Our study demonstrates that explaining GNNs is

a non-trivial task and all evaluation criteria play a role in assessing

their efficacy. We further show that graph-specific explanations

relate better to code semantics and provide more information to a

security expert than regular methods.

Keywords
Machine Learning, Software Security

ACM Reference Format:
Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck. 2021.

Explaining Graph Neural Networks for Vulnerability Discovery. In Proceed-
ings of the 14th ACM Workshop on Artificial Intelligence and Security (AISec
’21), November 15, 2021, Virtual Event, Republic of Korea. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3474369.3486866

1 Introduction
Graph neural networks (GNN) belong to an emerging technology

for representation learning on geometric data. GNNs have been ap-

plied successfully to a variety of challenging tasks, such as the clas-

sification of molecules [11] and protein-protein interactions [20].

Compared to other neural network architectures, GNNs can effec-

tively make use of graph topological structures and thus constitute

a versatile tool for analysis of complex data.

AISEC’21, November, 2021, Seoul, South Korea
© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
the 14th ACM Workshop on Artificial Intelligence and Security (AISec ’21), November 15,
2021, Virtual Event, Republic of Korea, https://doi.org/10.1145/3474369.3486866.

Because of these capabilities, GNNs have also been applied to

source code to identify security vulnerabilities [39] and locate poten-

tial software defects [2]. Source code naturally exhibits graph struc-

tures, such as abstract syntax trees, control-flow structures, and

program dependence graphs [10, 32], and thus is a perfect match for

analysis with GNNs. Previous work could demonstrate that GNNs

perform better on identifying security vulnerabilities than classical

static analyzers and learning-based methods that operate directly

on the source code [39]. Consequently, these neural networks are

considered the basis for new and intelligent approaches in software

security and engineering.

The efficacy of GNNs, however, comes at a price: neural net-

works are black-box models due to their deep structure and com-

plex connectivity. While these models produce remarkable results

in lab-only experiments, their decisions are opaque to security ex-

perts, which hinders their adoption in practice. Identifying security

vulnerabilities is a subtle and non-trivial task. Moreover, there are

even theoretical bounds as there cannot be a general approach to

vulnerability detection by Rice’s theorem [15], and therefore in-

teraction with human experts is indispensable when searching for

vulnerabilities. For them it is pivotal to understand the decision

process behind a method to analyze its findings and decide whether

a piece of code is vulnerable or not. Hence, any method for their

discovery must be interpretable.
One promising direction to address this problem is offered by

the field of explainable machine learning. A large body of recent

work has focused on explaining the decisions of neural networks,

including feed-forward, recurrent, and convolutional architectures.

Similarly, some specific methods have been proposed that aim at

making GNNs interpretable. Still, it is unclear whether and which

of the methods from this broad field can support and track down

decisions in vulnerability discovery. In this paper we address this

problem and establish a link between GNNs and vulnerability dis-

covery by posing the following research questions:

(1) How can we evaluate and compare explanation methods for
GNNs in the context of vulnerability discovery?

(2) Do we need graph-specific explanation methods, or are generic
techniques for interpretation sufficient?

(3) What can we learn from explanations of GNNs generated for
vulnerable and non-vulnerable code?

To answer these questions, we present a framework for evaluat-

ing explanation methods on GNNs. In particular, we develop a set

of evaluation criteria for comparing graph explanations and linking

https://doi.org/10.1145/3474369.3486866
https://doi.org/10.1145/3474369.3486866

them to properties of source code. These criteria include general

measures for assessing explanations adapted to graphs as well as

new graph-specific criteria, such as the contrastivity and stability

of edges and nodes. Based on these criteria, we are able to draw

conclusions about the quality of explanations and gain insights into

the decisions made by GNNs.

To investigate the utility of our framework, we conduct an exper-

imental study with regular and graph-specific explanation methods

in vulnerability discovery. For regular approaches we focus on

white-box methods, such as CAM [34] and Integrated Gradients

[29], which have proven to be superior to black-box techniques in

the security domain [30]. For graph-specific approaches we con-

sider GNNExplainer [35], PGExplainer [19], and Graph-LRP [24],

which all have been specifically designed to provide insights on

GNNs. Our study shows that explaining GNNs is a non-trivial task

and all evaluation criteria are necessary to gain insights into their

efficacy. Moreover, we show that graph-specific explanations relate

better to code semantics and provide more information to a security

expert than regular methods.

2 Neural Networks on Code Graphs
We start by introducing the basic concepts of code graphs, graph
neural networks, and their application in vulnerability discovery.

Code graphs. We consider directed graphs𝐺 = (𝑉 , 𝐸) with ver-

tices 𝑉 and edges 𝐸 ⊆ 𝑉 ×𝑉 . Nodes and edges can have attributes,

formally defined as (keyed) maps from 𝑉 or 𝐸 to a feature space.

It is well known that source code can be modeled inherently as

a directed graph [1, 2, 5], and we refer to the resulting program

representation as a code graph. In particular, the following code

graphs have been widely used for finding vulnerabilities:

AST An abstract syntax tree (AST) describes the syntactic struc-

ture of a program. The nodes of the tree correspond to sym-

bols of the language grammar and the edges to grammar

rules producing these symbols.

CFG A control flow graph (CFG) models the order in which the

statements of a program are executed. Therefore, each node

is a set of statements and edges are directed and labeled with

flow information and conditionals.

DFG A data flow graph (DFG) models the flow of information

in a program. A node denotes the use or declaration of a

variable, while an edge describes the flow of data between

the declaration and use of variables.

PDG The program dependence graph (PDG) proposed by Ferrante

et al. [13] describes control and data dependencies in a joint

graph structure. It was originally developed to slice a pro-

gram into independent sub-programs.

Based on these classic representations, combined graphs have

been developed for vulnerability discovery. The code property

graphs (CPG) by Yamaguchi et al. [32], for example, is a combi-

nation of the AST, CFG and PDG. Likewise, the code composite

graph (CCG) encodes information from the AST, DFG and CFG [7].

In the remainder, we use these two combined code graphs for our

experiments, as they have proven to be effective and capture se-

mantics from multiple representations. As an example, Figure 1

shows a CPG of a simple vulnerability.

1 #define MAXSIZE 40
2 void test(void)
3 {
4 char buf[MAXSIZE];
5 cin >>buf;
6 cout <<"result:"<<buf <<endl;
7 }

test

void

LOCAL cin>>buf

cin buf

shiftLeft

cout shiftLeft

LITERAL buf<<endl

buf endl

void

AST
CFG
DDG

Figure 1: Source code and CPG of a simplified vulnerabil-
ity. More saturated red on nodes in the CPG corresponds to
more attributed relevance.

Graph neural networks. GNNs are a model of deep learning and

realize a prediction function 𝑓 : 𝐺 (𝑉 , 𝐸) → R𝑑 [23] that can be used

for classification and regression. The most popular GNN types be-

long to so-called message passing networks (MPNs) [31] where the

prediction function is computed by iteratively aggregating infor-

mation from neighboring nodes.

In the simplest GNN layer the aggregation is the sum of the

neighboring feature vectors and the update forwards the aggregated

feature vector per node to a multilayer perceptron (MLP). The

prediction 𝑦 is then given by 𝑦 = 𝐴𝑋𝑊 , where 𝐴 is the normalized

adjacency matrix, 𝑋 the initial feature matrix, and 𝑊 a weight

matrix which we seek to optimize [14]. Kipf et al. coined the term

graph convolutional network (GCN) for this specific layer. GNNs can
be further extended by incorporating other graph features as well

as adding pooling and readout layers. Finally, other architectures

like GRUs or LSTMs can be used to update the node embeddings,

too, resulting in gated graph neural networks (GGNNs) [17].

GNNs for vulnerability discovery. Due to the rich semantics cap-

tured by code graphs, GNNs have been applied in a series of work for

vulnerability discovery. In particular, we focus on the approaches

Devign [39], ReVeal [8] and BGNN4VD [7] that can be considered

state of the art and are reported to provide promising results in the

respective publications.

Devign uses CPG graphs with additional edges connecting leaf

nodes with their successors. These edges are called natural code

sequence (NCS) and represent the natural order of the statements.

The model constitutes a six-time-step GGNN. The final embedding

of the sixth iteration and the initial node features are both forwarded

through a novel pooling layer:

𝜎 (·) = MaxPool(ReLu(Conv(·)))
The Conv layer is a regular 1D-convolution and is followed by a

ReLu activation and max-pooling. Afterwards, the output is for-

warded through an MLP. The output of both passes is multiplied

pairwise and the prediction is the averaged result [39].

ReVeal is a model using the regular CPG. The pre-processing step

includes a re-sampling strategy and the model consists of an eight-

time-step GGNN followed by a sum aggregation and a final MLP

as a prediction layer. The training involves a triplet loss incorporat-

ing binary cross-entropy, L2-regularization, and a projection loss

minimizing resp. maximizing the vector distances between similar

or different classes [8].

BGNN4VD differs from the other two GNN models as it uses bidi-

rectional CCGs. The model uses an eight-time-step GGNN with

the same pooling operator as Devign but followed by an MLP as a

prediction layer [7].

3 Explaining Machine Learning
Vulnerability discovery using machine learning has made remark-

able progress over the last years. The proposed systems, however,

are opaque to practitioners and it is unclear how they arrive at their

decisions. This lack of transparency obstructs their deployment in

the field of security and creates a gap between research and practi-

cal demands. Explanation methods (EM) for machine learning have

the potential to alleviate this problem and help to gain insights into

the capabilities of learning-based security systems. Explainability

methods turn the decision of a machine learning model into a trans-

parent and more likely to be human interpretable result. Since all

decisions depend only on the input signal of a model, conventional

explainability methods try to correlate the input features to the

final output. However, in the domain of GNNs, we are working

with graph signals that do not only depend on features in a vector

space but on discrete topological structures.

In the following, we introduce common explanation methods as

well as approaches specifically designed to explain GNNs.

Graph-agnostic explanation methods. There exist a variety of

general techniques for explaining learning models. For this paper,

we focus on nine common approaches and adapt them for explain-

ing GNNs. Since a node is the primitive element of code graphs,

we seek explanations that indicate the relevance of nodes for the

discovery of vulnerabilities. As general EMs explain only based

on features, we propagate the corresponding relevance scores of

edges to adjacent nodes, such that all methods yield node-level

explanations.

Class Activation Maps (CAM) were originally designed for ex-

plaining Convolutional Neural Networks (CNNs). Deep layers tend

to learn semantically meaningful features and CAM scales these

features from the last hidden layer with the weight connecting

them to the desired output node in order to generate a feature-wise

explanation [38].

LinearApproximation also known as Gradient ⊙ Input calculates

for each input feature its linearized contribution to the classification

output. Technically, this is the element-wise multiplication of the

desired output’s gradient with respect to the input node feature

with the corresponding input activation [26].

GradCAM applies the idea of Linear Approximation to the inter-

mediate activations of GNN layers instead of the input activations.

This yields an advantage similar to CAM since more relevant infor-

mation is aggregated. In this work, we take the GradCAM variant

where activations of the last convolutional layer before the readout

layer are used [25].

SmoothGrad averages the node feature gradients on multiple

noisy inputs and compared to simple gradients yields noise-robust

explanations [27]. We use noise sampled from a normal distribution

(𝜎 = 0.15) with 50 samples. These parameters were optimized for

the descriptive accuracy of the ReVeal model.

Integrated Gradients (IG) improves the Linear Approximation

by referring to a counterfactual baseline input 𝐺 ′
and then using

(1) gradients that are averaged along a straight path to the actual

input 𝐺 , and (2) the difference of the input activations between

𝐺 and 𝐺 ′
instead of the absolute activation [29]. We set all node

features to zero for𝐺 ′
to achieve a very low base prediction score.

Gradient or SaliencyMethod simply measures the change in the

prediction with respect to the change of the input by calculating the

corresponding gradients. Although simple and effective it is known

that the generated relevance maps are oftentimes noisy [29].

Guided Backpropagation (GB) clips the negative gradients to

have a positive influence during backpropagation. This technique

yields explanations that concentrate on features having an excita-
tory effect on the output prediction [28].

LayerwiseRelevancePropagation (LRP) creates relevancemaps

by propagating the prediction back to the input such that a con-

servation property holds with respect to the total relevance scores

of each layer. We tested the (𝛼, 𝛽) and 𝜖-rule [16] but use only the

𝜖-rule since it yields better results in our experiments.

Excitation Backpropagation (EB) calculates the relative influ-

ence of the activations of the neurons in layer 𝑙 − 1 to one from

layer 𝑙 using backpropagation while only taking positive weights

into account [37]. The gradients are normalized to sum up to 1

so that the output can be interpreted as the probability whether a

neuron will fire or not given some input.

Graph-specific explanation methods. In addition to the nine gen-

eral methods for explainable machine learning, we also consider

three EMs that have been specifically designed for explaining GNNs.

To realize a unified analysis of all methods in this paper, we adapt

these graph-specific approaches, such that they also provide expla-

nations on the level of nodes. In particular, we propagate relevance

scores assigned to edges and walks to adjacent nodes in the code

graphs, resulting in explanations similar to those of the graph-

agnostic methods.

GNNExplainer is a black-box forward explanation technique for

GNNs. Ying et al. [35] argue that general EMs fall short of incor-

porating graph topological properties and therefore develop this

approach. For a given graph, GNNExplainer tries to maximize the

mutual information (MI) of a prediction with respect to the predic-

tion based on a variable discriminative subgraph 𝑆 and a subset

of node features. The subgraph that retains important edges is

obtained by learning a mask that is applied to the adjacency matrix.

PGExplainer tackles the problem that the explanations for GNN-

Explainer have to be calculated for every individual graph instance.

PGExplainer provides a global understanding of the inductive na-

ture of the model by extracting relevant subgraphs 𝑆 similar to

GNNExplainer. Whereas GNNExplainer is not suitable for an induc-

tive graph learning setting (cf. [19]) PGExplainer uses a so-called

explanation network on a universal embedding of the graph edges

to obtain a transferable version of the EM.

Graph-LRP is a method using higher order Taylor expansions to

identify relevant walks over multiple layers of a GNN where the

message propagation between nodes during training is considered

as walks of information flow [24]. The relevance per walk is com-

puted using a backpropagation similar to LRP for each node in

the walk. Schnake et al. [24] argue that the information contained

in these walks is richer compared to explanations generated by

GNNExplainer or PGExplainer.

4 Evaluating Explanations of GNNs
It is evident from the previous section that a large arsenal of meth-

ods is readily available for explaining and understanding GNNs.

However, the presented explanation methods considerably differ in

how they characterize the decision process and derive explanations

for a given input graph. As a result, it is unclear which methods

are suitable for explaining the predictions of GNNs in vulnerabil-

ity discovery and how the generated relevance maps relate to the

semantics of code and security flaws.

To tackle this problem, we introduce a framework for evaluating

explanation methods on GNNs. In particular, we build on previous

work by Yuan et al. [36] and Warnecke et al. [30] who propose

criteria for comparing explanation methods in security. As their

work does not account for relational information and topological

structure, we extend their criteria as well as introduce new ones,

specifically designed for understanding how an EM characterizes

nodes in code graphs.

Descriptive accuracy. To determine whether an EM captures rel-

evant structure in a GNN, we remove a relative amount 𝑘% of the

most relevant nodes from the input graph and calculate another for-

ward pass of the model for each graph in the test set. The descriptive
accuracy (DA) for 𝑘% is then given by the model’s drop in accuracy

(with respect to its original accuracy) averaged over the test data.

The larger this drop is, the more relevant nodes are identified by

the EM. The area under the DA curve is a single numerical quantity

that summarizes its behavior, with a large area indicating a steep

rise of the curve and thus an accurate explanation of the GNN’s

decision process.

The DA shares similarities with the fidelity measurement by

Yuan et al. [36]. This measure uses thresholds on the relevance

maps to evaluate the accuracy of the explanations. Instead, we first

rank the nodes by relevance and then remove a fixed percentage

to obtain the DA. Since there is often a high variance in the size

of code graphs, we find this measure beneficial as it allows us to

obtain relevant subgraphs for vulnerability localization.

Structural robustness. To measure the robustness of an input

graph for a given EM we use the remaining agreement (RA). We

compute the 10% most relevant nodes before and after perturbing

the input graph by dropping its edges with a certain probability

𝑝 and define the RA as the size of the intersection of these highly

relevant nodes.

Our motivation comes from the desire to understand how suscep-

tible an EM is against manipulations where an adversary tampers

with the input such that the explanation method creates an arbi-

trary, meaningless explanation, for example, when GNN and EMs

are used to assess code of unknown origin. In this context, we in-

terpret structural robustness as the sensitivity of the model and the

EM to still label the original relevant code parts despite an attacker

trying to hide certain program semantics by altering control or data

flow. Although structural robustness measures the stability of the

EM against noise only, it provides an upper bound of the effort a

potential attacker needs to successfully attack the EM.

Contrastivity. The descriptive accuracy and structural robustness

provide a general view on the quality of an explanation for a GNN,

yet they do not take into account the specifics of code analysis and

vulnerability discovery.

To address this issue, we propose to measure the contrastivity

of an explanation. This measure is calculated by comparing rel-

evant statements for the vulnerable and non-vulnerable class. In

taint-style-analysis [32], for example, identifying vulnerabilities

can be approached by traversing all CPG edges that flow from user-

controlled nodes to security-critical sinks (e.g. fopen or memcpy).

Hence, we expect the explanations to differ for vulnerable and non-

vulnerable samples in these paths. If, for instance, critical calls are

completely absent in the AST, the model does not need to further

look at the DFG and CFG edges.

We calculate the contrastivity of an EM using a histogram of the

AST terminal and non-terminal (type) identifier of the 10% most

relevant nodes. Then, we compute the chi-square distance of the

normalized node histograms of negative and positive samples:

𝜒2 (𝑥,𝑦) = 1

2

𝑑∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2

𝑥𝑖 + 𝑦𝑖
.

A higher difference indicates that the model takes more different

node types into account when distinguishing between vulnerable

or non-vulnerable samples, providing a more diverse view on the

characteristics of the code.

Graph sparsity. An explanation method must stay concise during

operation, since code graphs can become too large to be manu-

ally assessed by practitioners. An explanation method that marks

hundreds of nodes in a code graph as relevant yields no practical

benefit. To measure the conciseness of an explanation, we adapt

the mass around zero (MAZ) measure [30] to GNNs: To this end,

the relevance values of the nodes are normalized to be contained

in the interval [−1, 1] and then a cumulative distribution function

𝑟 ↦→
∫ 𝑟

−𝑟 ℎ(𝑥)𝑑𝑥 of their absolute values is calculated. The larger
the area under this curve is, the more relevance values of nodes are

close to 0 and hence of little influence. If all the relevance values are

positive (resp. negative) then normalization is just division by the

value with highest absolute value (i.e. 𝑥max resp. 𝑥min), otherwise

we use the projective transformation

𝑥 ↦→ (𝑥max−𝑥min) ·𝑥
(𝑥max+𝑥min) ·𝑥 − 2·𝑥max ·𝑥min

with fixed point 0 mapping 𝑥min to −1 and 𝑥max to 1.

The area under the adapted MAZ provides us with a single

numerical quantity that describes how concise an EM operates,

where a high area indicates explanations with a sparse assignment

of relevance values to nodes.

Stability. Some EMs are non-deterministic and do not provide

identical results during different runs. This slight randomness can

pose a problem for vulnerability discovery, where the differences

between vulnerable and secure code is often nuanced and subtle.

To account for this problem, we measure the stability in terms of

standard deviation of the descriptive accuracy and sparsity over

five runs. Note that only Smoothgrad, PGExplainer, GNNExplainer

and Graph-LRP are non-deterministic, as they use randomly initial-

ized weights or random sampling. The remaining graph-agnostic

methods are deterministic by design and hence stable per definition.

Efficiency. Finally, the runtime performance of an explanation

method should not drastically increase the time a security specialist

needs for her traditional workflow. Especially for large and complex

code graphs, it is crucial that explanations are generated in reason-

able time, for instance, a few seconds. To reflect this requirement,

we measure the average runtime of an EM per single graph. Note

that the runtime in a practical setup also depends on details of the

implementation and GNN model, and thus this criterion should

only be used to provide an intuition of the performance rather than

precise runtime numbers.

5 Experimental Study
After introducing our evaluation criteria, we are finally ready to

empirically evaluate the performance of explanation methods on

GNNs for vulnerability discovery. In particular, we consider the

generic and graph-specific approaches (9+3) for explanations de-

scribed in Section 3 on the three GNNs presented in Section 2.

5.1 Setup
We train Devign and ReVeal on graphs with vulnerabilities from

C and C++ open-source software and BGNN4VD on a dataset con-

taining vulnerabilities in open-source Java software. Some explain-

ability algorithms have hyperparameters that need to be calibrated.

We use Bayesian optimization to find suitable parameters for Inte-

grated Gradients, SmoothGrad, GNNExplainer, PGExplainer and

Graph-LRP. Finally, we calculate the area under curve for DA with

𝑘 ∈ {1, 5, 10, 15, 30, 50, 75}, for the sparsity metric with interval

sizes 𝑟 ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1.0} and for structural robustness

with edge dropping probabilities 𝑝 ∈ {0.005, 0.1, 0.2, 0.5, 0.75}. As
a baseline in all experiments, we randomly generate explanations,

where the relevance values for nodes are drawn independently from

a uniform distribution.

Case studies. For our study, we consider three datasets and the

corresponding GNNs as case studies. Each dataset consists of source

code with and without security vulnerabilities. Table 1 shows an

overview of the case studies and the reproduced performance of

the three models. Mean and standard deviation of ten experiments,

each with different stratified dataset 80/20 splits, are reported. We

see a broad spectrum in the case studies’ performances which is

desirable, since we obtain insights in to what extent EMs depend

on the underlying GNN model.

Case-Study Accuracy Precision Recall F1-Score
Devign 55.68±0.36 55.28±0.38 90.32±2.68 68.58±1.09
ReVeal 84.66±0.18 58.53±0.34 58.14±0.45 58.33±0.40
Vulas (BGNN4VD) 88.05±0.18 84.10±0.12 90.10±0.03 87.00±0.07

Table 1: Performance of all case studies for vulnerability dis-
covery (our re-implementations).

Case study A: Devign. According to the original publication,

the source code is transformed into a CPG using Joern
1
and en-

hanced with the NCS. Type information is label encoded. We re-

place the original gated graph neural network (GGNN) with six

GCN message-passing networks, as this provides a slightly better

model performance. We use L2-regularization during training with

𝜆L2 = 0.0001 and a learning rate of 0.0001 for the Adam optimizer,

since the original hyperparameters were not published. The model

is originally trained to identify security vulnerabilities found in the

projects FFmpeg and Qemu with excellent accuracy [39]. However,

we are not able to reproduce the corresponding results and only

attain a moderate F1-score.
2

Case study B: ReVeal. In this case study, the dataset is composed

of security vulnerabilities extracted from patches for the Chromium

and Debian projects [8]. The code graphs are again extracted using

Joern. We use L2-regularization with 𝜆L2 = 0.001 and a learning

rate of 0.001 for the Adam optimizer. Our accuracy (cf. Table 1) is

on par with the original publication; however, we report a higher

F1-score which could be due to different dataset splits.

Case study C: Vulas (BGNN4VD). As the third case study, we use

a Java dataset refered to as Vulas3 from Ponta et al. [21]. The dataset

consists of manually curated CVEs mined from Java software repos-

itories like Tomcat, Struts, and Spring. In contrast to memory-based

vulnerabilities often found in C/C++ code, this dataset contains

security issues like SQL injections, XXE vulnerabilities, directory

traversals, or XSS injections. These vulnerabilities are linked to

commits before and after the respective patches. We apply the

BGNN4VD model and extract the CCG from each changed file in

the commit both before and after the actual fix using the Fraunhofer-

CPG
4
. This tools extracts graphs similar to the CCG used by Cao

et al. [7]. Regarding this dataset, each Java file in a commit is merged

into a single potentially disconnected graph. Furthermore, we add

random Java files from the same repositories. We end up with a

dataset composed of 1, 000 vulnerable samples, 500 fixed samples

and 500 randomly chosen benign samples. The model is trained

using the Adam optimizer with 𝑙𝑟 = 0.001 and L2-regularization

with 𝜆L2 = 0.0001.

1
https://github.com/joernio/joern

2
Chakraborty et al. [8] report the same and, like them, we were not successful in

contacting the authors.

3
https://sabetta.com/post/vulas-dataset-released/

4
https://github.com/Fraunhofer-AISEC/cpg

Criteria Descriptive Accuracy Structural Robustness Contrastivity Graph Sparsity

Model Devign ReVeal Vulas Devign ReVeal Vulas Devign ReVeal Vulas Devign ReVeal Vulas

GNNExplainer

0.08

±0.003
0.15

±0.008
0.29

±0.005
0.55

±0.000
0.58

±0.010
0.49

±0.000
0.09

±0.01
0.19

±0.01
0.00

±0.010
0.73

±0.000
0.73
±0.001

0.83
±0.001

PGExplainer

0.09

±0.003
0.16

±0.002
0.22

±0.013
0.37

±0.000
0.57

±0.010
0.49

±0.010
0.10

±0.010
0.21

±0.030
0.12

±0.040
0.81
±0.010

0.73
±0.001

0.77

±0.140

Graph-LRP

0.09

±0.002
0.10

±0.000
0.23

±0.014
0.13

±0.000
0.71

±0.000
0.22

±0.010
0.11
±0.000

0.35
±0.010

0.19

±0.000
0.79

±0.000
0.14

±0.000
0.79

±0.000

Random

0.08

±0.003
0.18

±0.014
0.19

±0.012
0.07

±0.000
0.07

±0.010
0.08

±0.010
0.12

±0.000
0.40

±0.000
0.18

±0.000
0.51

±0.000
0.52

±0.000
0.51

±0.000

EB 0.09 0.10 0.12 0.48 0.71 0.39 0.02 0.00 0.22 0.80 0.14 0.32

GB 0.10 0.10 0.25 0.40 0.71 0.50 0.05 0.00 0.00 0.80 0.14 0.14

Gradient 0.10 0.10 0.25 0.40 0.71 0.50 0.05 0.00 0.00 0.80 0.14 0.14

LRP 0.09 0.10 0.25 0.16 0.71 0.34 0.08 0.00 0.27 0.77 0.14 0.75

CAM 0.26 0.29 0.12 0.45 0.49 0.49 0.01 0.07 0.21 0.48 0.14 0.69

SmoothGrad 0.08 0.10 0.34 0.30 0.71 0.55 0.03 0.00 0.30 0.77 0.15 0.78

GradCAM 0.11 0.10 0.33 0.42 0.71 0.49 0.01 0.00 0.28 0.56 0.14 0.77

Linear-Approx 0.09 0.10 0.13 0.42 0.71 0.49 0.02 0.00 0.17 0.80 0.14 0.67

IG 0.31 0.14 0.20 0.71 0.72 0.72 0.00 0.06 0.08 0.15 0.19 0.14

Table 2: AUC for descriptive accuracy (DA), sparsity (MAZ) and structural robustness (RA) and 𝜒2 distance for contrastivity.
The standard deviation is omitted for deterministic methods as well as SmoothGrad as it is neglectable.

5.2 Results
Equipped with three case studies on vulnerability discovery, we

proceed to compare the different explanations based on our evalua-

tion criteria. These experiments are repeated five times and mean

and standard deviation are reported in Table 2.

Descriptive accuracy.We find that all graph-specific methods are

inferior to the graph-agnostic ones under this criterion. Overall,

the best method depends on the tested model. Graph-LRP is on par

with its structure-unaware counterpart LRP. Furthermore, PGEx-

plainer performs equal or better than GNNExplainer on two out

of three tasks. Some graph-agnostic methods are even worse than

the random baseline for certain models. Furthermore, as seen in

Figure 2, for Vulas it is sufficient to remove less than 10% of the

nodes to nearly render the prediction insignificant, since a DA of

84% − 50% = 34% corresponds to the model predicting similar to

random guess for Vulas. The DA curves show different levels of the

results, which are due to the different model baselines. Compared

to ReVeal, if more than 40% of the relevant nodes are removed, the

accuracy drops close to random for most methods, even though

Vulas has a lower node median count than ReVeal. We measure the

drop in the F1-score for Devign, since this model has a low accuracy

score in the first place.

As expected from the values in Table 1, the explanation methods

can not reveal much for Devign as the model does not predict

much better than random guessing. IG works best in the Devign

case study. Our observation fits with the insights from Sanchez-

Lengelin et al. [23]. Just as they suggest, we see that CAM and IG are

among the best candidates. Moreover, according to our experiments

SmoothGrad is a winning candidate as well.

We link the bad performance of PGExplainer to a phenomenon

called Laplacian oversmoothing [6]. For deep GNNs, the node em-

beddings tend to converge to a graph-wide average. Depending

on the depth of the network, the node embeddings get harder to

separate and the performance of the network gets worse. Chen

et al. [9] measure the mean average distance (MAD) of the node

embeddings and demonstrate how networks with a higher MAD

perform better. In the best runs, ReVeal, Devign and Vulas have a

MAD of 1.0, 0.21 and 0.88 respectively. Because PGExplainer uses

node embeddings to predict an edge’s existence, we argue that this

phenomenon influences such explanation methods. We can link the

low MAD to the low DA from Table 2.

From descriptive accuracy to visualization. Based on the DA, we

can easily extract minimal descriptive subgraphs that contain rel-

evant nodes and yield insights on what paths characterize a vul-

nerability. As an example, BGNN4VD correctly identifies the SSRF

vulnerability (CVE-2019-18394
5
) from Vulas that occurred in the

OpenFire software. Figure 3 shows the vulnerability. After retriev-

ing the 10% most relevant nodes from SmoothGrad, we can con-

struct a minimal descriptive subgraph of this vulnerability as shown

in Figure 3. We can traverse the CFG and DFG edges to reproduce

the vulnerability, starting from doGet over getParameter(host) and

the method call getImage(host, defaultBytes) and ending with the

IfStatement where we would expect an input sanitization.

Extending descriptive accuracy to edges. Besides determining rele-

vant nodes, it is also possible to calculate the most important edges

and their descriptive accuracy. Except for GNNExplainer and PG-

Explainer, which both compute edge relevance scores, we calculate

an edge relevance score by calculating the harmonic mean of the

adjacent node relevance scores for each edge for the remaining

EMs. An edge is only important if both adjacent nodes are similarly

important. Eventually, the relevance of the edge types can be cal-

culated by computing the histogram of the top 10% relevant edges.

For space reasons, we compare the edge type attributions of the

5
https://nvd.nist.gov/vuln/detail/CVE-2019-18394

0 20 40 60
k%

0.0

0.2

0.4

0.6

0.8

1.0

De
sc

rip
tiv

e
Ac

cu
ra

cy
 (F

1-
Sc

or
e)

Devign

0 20 40 60
k%

0.0

0.2

0.4

0.6

0.8

1.0

De
sc

rip
tiv

e
Ac

cu
ra

cy

Reveal

0 20 40 60
k%

0.0

0.2

0.4

0.6

0.8

1.0

De
sc

rip
tiv

e
Ac

cu
ra

cy

Vulas

0.0 0.2 0.4 0.6 0.8 1.0
Interval Size

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

0.0 0.2 0.4 0.6 0.8 1.0
Interval Size

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

0.0 0.2 0.4 0.6 0.8 1.0
Interval Size

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

0.0 0.2 0.4 0.6 0.8
Edge Dropout Probability

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 R

ob
us

tn
es

s

graph_lrp
gnn_explainer

pg_explainer
grad_cam

cam
ig

smoothgrad
random

0.0 0.2 0.4 0.6 0.8
Edge Dropout Probability

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 R

ob
us

tn
es

s

0.0 0.2 0.4 0.6 0.8
Edge Dropout Probability

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

al
 R

ob
us

tn
es

s

Figure 2: Descriptive accuracy (first row from top), sparsity (second row) and robustness curves (last row) for theDevign, ReVeal
and Vulas case study for selected explanation methods.

graph-specific methods only with those for the generic EMs with
the best DA.

In this setting, SmoothGrad shows the best DA for Vulas, al-

though, it only attributes high relevance to AST edges (Figure 4).

On the other hand, PGExplainer attributes a lot more relevance

to semantically important edge types, although its DA is lower.

It would make sense, that assuming the model correctly learns

to identify security vulnerabilities, EMs should assign more rele-

vance on semantically meaningful edges. The AST edges should

not encode much information when identifying vulnerable code.

For the Vulas case study, DFG seems to be important for identi-

fying vulnerabilities, comparing the histogram with the negative

and positive samples. Unfortunately, SmoothGrad also shows the

same histogram, both for negative and positive samples, while PG-

Explainer attributes more scores to semantically interesting edge

types.

Given the results for the ReVeal case study from Figure 4, the

issue becomes more obvious: Most graph-agnostic methods fail to

attribute relevance to semantically meaningful edges. Only GNNEx-

plainer and PGExplainer attribute more relevance to meaningful

edges when seeing positive samples. In general, CFG seems to

be unimportant for positive samples. Graph-agnostic explanation

methods attribute most relevance to semantically irrelevant AST

and NCS edges for Devign (not shown in the plot).

1 ...
2 public void doGet(HttpServletRequest request ,
3 HttpServletResponse response) {
4 ...
5 byte[] bytes = getImage(host , defaultBytes);
6 if (bytes != null) {
7 writeBytesToStream(bytes , response);
8 }
9 }
10 private byte[] getImage(String host ,
11 byte[] defaultImage) {
12 if (hitsCache.containsKey(host)) {
13 return hitsCache.get(host);
14 }
15 byte[] bytes = getImage("http ://" + host
16 + "/favicon.ico");
17 ...
18 }
19 ...

doGet

getParameter(host) getImage(host, defaultBytes)

host private byte[] getImage

String host CompoundStatement

IfStatement

AST
CFG
DFG

Figure 3: Minimal descriptive subgraph for the vulnerabil-
ity CVE-2019-18394. The vulnerability has been detected by
BGNN4VD and the graph extracted with SmoothGrad.

Structural robustness. Overall, Integrated Gradients is by far the

best EM according to its robustness (cf. Table 2). By contrast, Graph-

LRP is the worst method on average, which makes sense since it

calculates relevant walks and therefore strongly depends on edges.

In Figure 2, we can see how the remaining methods compare against

each other, with random being the worst method. Devign and Vulas

as opposed to ReVeal show a steeper decrease, which could mean,

that the model is trained to focus on the edges instead of the nodes.

The random baseline is very low, as we attribute random nodes high

relevance and an intersection of relevant nodes is very unlikely.

Finally, ReVeal is less affected by edge perturbations.

Contrastivity. The contrastivity is rather low for most EMs, indi-

cating that the selection of nodes is not very diverse and there is

room for improvement. Still, Graph-LRP provides the largest dis-

tance in the case studies Devign and ReVeal between vulnerable and

non-vulnerable code. SmoothGrad achieves the best contrastivity

score for Vulas. For Devign and Vulas, all graph-agnostic EMs are

below the baseline. In general, graph-specific methods seem to be

better in identifying differences between relevant node types of

vulnerable vs. non-vulnerable samples.

We observe that those EMswith a very low contrastivity attribute

most relevance to the root nodes, both in the CCG and CPG.

AST CFG DFG0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nt

 E
dg

e
Ty

pe
 F

re
qu

en
cy

AST CFG DFG0.0

0.2

0.4

0.6

0.8

1.0
Vulas

AST CFG CDG DDG0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nt

 E
dg

e
Ty

pe
 F

re
qu

en
cy

AST CFG CDG DDG0.0

0.2

0.4

0.6

0.8

1.0

graph_lrp
gnn_explainer

pg_explainer
smoothgrad

cam
ig

grad_cam
baseline

ReVeal

Figure 4: Important edge types for Vulas and ReVeal. Left
column shows negative results and right positive.

By looking at the histogram over the most important node types

(AST block identifier) labelled by graph-specific and graph-agnostic

explainability methods respectively, we can clearly see a more

diverse distribution for the graph-specific methods in Figure 5,

although the root nodes still determine the largest attribution mass

for both EM classes. Some labels are skipped to be more readable.

However, we find that the contrastivity of the graph-specific

methods is influenced by the root nodes of the AST.When removing

ad
di

tio
n

ca
st

in
di

re
ct

fie
ld

ac
ce

ss
le

ss
th

an
as

se
rt_

tru
e

co
nt

ro
l_s

tru
ct

ur
e

id
en

tif
ie

r
lit

er
al

m
et

ho
d

pa
ra

m
en

co
de

r -
>

co
de

c_
in

te
rfa

ce
re

f_
as

sig
n

as
sig

nm
en

t
in

di
re

ct
io

n
lo

gi
ca

ln
ot

ev
p_

en
co

de
bl

oc
k0.0

0.2

0.4

0.6

0.8

1.0 Graph-specific

ad
dr

es
so

f
fie

ld
ac

ce
ss

le
ss

th
an

bl
oc

k
ex

pe
ct

_f
al

se
id

en
tif

ie
r

lit
er

al
m

et
ho

d
pq

nf
ie

ld
s

ar
ra

y_
le

ng
th

m
al

ta
_f

pg
a_

up
da

te
_d

isp
la

y
lo

gi
ca

lo
r

te
st

pa
rs

e
av

_lo
g

va
pi

c_
pr

ep
ar

e0.0

0.2

0.4

0.6

0.8

1.0 Graph-agnostic
Negative
Positive

Figure 5: Important AST identifier histogram for ReVeal for
negative and positive samples.

Category DA Sparsity Robustness Contrastivity Stability Efficiency

Graph-agnostic

Graph-specific

Table 3: Final evaluation comparing graph-agnostic and graph-specific EMs. One point for a winner EM per model.

the root nodes and measuring the accuracy we observe only a drop

of 8%, 5% and 0% for Vulas, ReVeal and Devign, respectively. This is

a hint that it is not the model that focuses on top nodes but rather

the explanations do. Intuitively, it is not a desired behavior that an

EM distributes relevance to nodes that do not provide any useful

information to an expert. However, since the root node aggregates

the relevance from nodes lower in the hierarchy, it makes sense.

We can see this phenomenon in Figure 1, too, where the root node

has similar relevance as the node cin >> buf.

Graph sparsity We see in Table 2 that for all models the graph-

specific EMs yield the sparsest scores. This makes perfect sense

since they are optimization algorithms that seek to maximize mu-

tual information by maximizing the prediction score and minimiz-

ing the probability of an edge between two nodes. The random

baseline has an AUC of around 50% because all nodes’ relevance

scores are uniformly distributed. Integrated Gradients have the

worst results given the Devign and Vulas results. IG, for instance,

attributes around 90% of the overall importance to approximately

60% of the nodes in the ReVeal case study.

In Figure 2 the MAZ curves (sparsity) are presented for the case

studies. All graph-agnostic methods give extremely dense explana-

tions for the ReVeal case study. Overall the graph-agnostic methods

seem to be inferior compared to graph-specific methods. In Figure 1,

we present an explanation of a CPG showing a vulnerability
6
that is

correctly classified by ReVeal. The attribution is applied using PGEx-

plainer which correctly attributed relevance to the cin >> buf node.

However, unimportant nodes like the root node are highlighted as

well.

Stability. Table 2 shows that all graph-specific methods yield an

uncertainty that differs extremely from model to model. The graph-

agnostic explanation methods do not vary at all. Furthermore, in

the Sparsity and the DA column we see that PGExplainer has very

different score levels across multiple runs. Each run differs in the

descriptiveness from the identified important nodes and the amount

of relevance distributed over all nodes.

The variance in the runs of Graph-LRP correlates to the sampled

walks: Depending on the dataset and the sampling strategy, there

is a difference in DA and MAZ. Graph-LRP and GNNExplainer

generally have a much lower MAZ AUC standard deviation than

PGExplainer, i.e. there is little variation in their conciseness. On

the other hand PGExplainer’s MAZ AUC varies extremely and,

therefore, may yield different explanations. In addition its stability

depends proportionally on the median node count of the dataset

which is lowest for Devign.

We connect the large standard deviation of the graph-specific EMs

in Vulas concerning the DA with the low node and edge count.

A low node count means removing a single different node could

have a stronger effect on the model’s decision. Furthermore the

6
Taken from https://samate.nist.gov/SARD/

CCG has less edges than the CPG, since the CCG does not contain

PDG edges. Hence, a single misspredicted edge in PGExplainer or

GNNExplainer could lead to a vastly different classification output.

Efficiency. Graph-specific methods are almost always slower than

their conventional competitors. PGExplainer is trained one time per

dataset, which in turn, renders its training time for the inference

negligible. Due to the fact, that the PGExplainer uses node em-

beddings to predict the edge probability in a graph, we see that its

runtime is extremely slow for ReVeal which can be directly linked to

the large node and edge count median of 333 and 1132 respectively,

for this particular case study. CAM, GB, linear approximation and

EB scored the best scores in terms of runtime in our experiments.

Among the graph-specific methods, PGExplainer was the fastest

in 2 out of 3 tasks
7
. Graph-LRP is slow as well since it calculates

one LRP run for each walk. Runtime figures can be seen in the

appendix.

6 Discussion
Our evaluation of the various EMs provides a comprehensive yet

also complex picture of their efficacy in explaining GNNs. Depend-

ing on the evaluation criteria, the approaches differ considerably in

their performance and a clear winner is not immediately apparent,

as shown in Table 3. In the following, we thus analyze and structure

the findings of our evaluation by returning to the three research

questions posed in the introduction.

(1) How can we evaluate and compare explanation methods for
GNNs in the context of vulnerability discovery?

We find that existing criteria for evaluating EMs are incomplete

when assessing GNNs in vulnerability discovery. Our experiments

show that graph-specific criteria are crucial for understanding how

an approach performs in a practical application. For example, a se-

curity expert would not only focus on high accuracy of explanations

but also stability, sparsity, efficiency, robustness, and contrastivity.

Theoretically, a study with human experts would provide more

insights. However, this would be intractable. As a trade-off, we

suggest using combinations of our proposed evaluation criteria to

measure the potential to be human interpretable. The interplay of

these measurements is crucial and all have to be considered.

(2) Do we need graph-specific explanation methods, or are generic
techniques for interpretation sufficient?

Our evaluation demonstrates that generic EMs often lack sparse

explanations and tend to mark more nodes as relevant than needed.

For a security expert, it is necessary to spot the location of vulner-

abilities. Not only have graph-specific methods larger differences

between negative and positive samples more often, but also do they

focus on semantically more meaningful edge types. As Yamaguchi

et al. [32] show only few security vulnerability types can be found

7
Measured on AWS EC2 p3.2xlarge instance.

when only taking AST edges into account and hence a more con-

trastive view is necessary. It turns out that generic techniques often

fail to provide this perspective when analyzing GNNs.

The stability and descriptive accuracy of graph-specific expla-

nation methods, however, is inferior to generic approaches. Con-

sequently, the sparse and more focused explanations comes with

a limited accuracy in the relevant features. This opens new di-

rections for research and developing graph-specific methods that

attain the same accuracy as generic approaches. Some possible

improvements could be adding regularization to focus on semanti-

cally important nodes, using node embeddings from lower layers

to overcome Laplacian oversmoothing, or to use the contrastivity

criterion already within the generation of explanations.

(3) What can we learn from explanations of GNNs generated for
vulnerable and non-vulnerable code?

We observe that many explanation methods focus on semanti-

cally unimportant nodes and edges, while having a large descriptive

accuracy. This could be a hint that the GNNs do not actually learn

to identify vulnerabilities but artifacts in the data sets, so-called

spurious correlations. As this phenomena occurs over several ex-

planation methods, it seems rooted in the learning process of GNNs

and thus cannot be eliminated easily. This finding is in line with

recent work on problems of deep learning in vulnerability discov-

ery [8] that also points to the risk of learning artifacts from the data

sets. Hence, there is a need for new approaches that either elimi-

nate spurious correlations early or improve the learning process,

such that more focus is put on semantically relevant structures, for

example, by additionally pooling AST, CFG and DFG structures.

Moreover, we show on a real-world vulnerability that the ex-

traction of minimal relevant subgraphs from explanations is possi-

ble and provides valuable insights. These subgraphs can be used

to construct detection patterns for static-analyzers [33], to guide

fuzzers [40], or to find possible attack vectors for penetration test-

ing [12]. Hence, despite the discussed shortcomings of explanation

methods and GNNs in vulnerability discovery, we finally argue that

they provide a powerful tool in the interplay with a security expert.

Especially, the generation of subgraphs from explanations helps

to understand the decision process for a discovery and to decide

whether a learning-based system spotted a promising candidate for

a vulnerability in source code.

7 Related Work
The variety of methods for explainingmachine learning has brought

forward different approaches for evaluating and comparing their

performance [e.g., 18, 29, 34, 37]. In the following, we briefly discuss

this body of related work, indicating similarities and differences to

our framework.

Closest to our work is the study by Warnecke et al. [30] who

develop evaluation criteria for EMs in security-critical contexts. For

instance, they propose variants of the descriptive accuracy, spar-

sity, robustness, stability, and completeness for regular explanation

methods. We build on this work and adapt the criteria to graph

structures, such that they do not only measure the relevance of

individual features but topological structures. Furthermore, we in-

troduce new criteria that complement the evaluation and emphasize

important aspects in the context of GNNs. Baldassarre and Azizpour

[4] compare different explanation methods by attributing relevance

to features but do not consider the underlying graph structure.

Since nodes and edges are natural building blocks of a graph, it

is beneficial to focus on identifying those important topological

structures. This is especially important since we represent code as

graphs and relevant nodes can be directly mapped to relevant code

parts.

In a different research branch, explanation methods on GNNs

have been evaluated by Sanchez-Lengeling et al. [23], Baldassarre

and Azizpour [4] and Pope et al. [22]. Their main contributions

include the reinterpretation of classical EMs to be applicable to

graph neural networks and their evaluation on GNNs such as CAM,

LRP and GradCAM. However, their works fall short of introducing

new graph-specific criteria that are designed to explain structures

not captured in common feature vectors. Besides their lack of a

thorough comprehensive assessment as we introduce in our work,

they do not consider any graph-specific EM.

Furthermore, Yuan et al. [36] introduce a framework for evalu-

ating explanation methods for GNNs. They introduce the criteria

fidelity, stability, and sparsity which compute the relevance for the

model’s prediction, the robustness against noise, and the concise-

ness of the methods respectively. Their work does not consider

robustness against adversaries, efficiency or contrastivity and, most

importantly, lacks experimental evaluations.

Pope et al. also determine the contrastivity of an explanation

method by measuring the contrast between explanations for dif-

ferent classes [22]. However, they do not deliver insights about

robustness or efficiency in their experiments which is especially

important for the security domain. We adapt their contrastivity

into the context of vulnerability discovery and use it to asses how

well an explanation aligns with the actual code semantics. Besides

that, we want to assess how the model differentiates between vul-

nerable and non-vulnerable samples. We try to answer whether

GNNmodels actually learn to identify vulnerabilities. This question

aligns with different works, that critically analyze the capability of

models learning to represent vulnerabilities [3, 8].

In summary, current research does not offer any comprehensive

framework applicable to GNNs in security related contexts. The

majority of related work measures the quality of graph explana-

tion methods with a specific ground truth [35] or domain knowl-

edge [24] when checking whether EMs correctly detect cycles in a

synthetic dataset, for example [35]. We try to evaluate models and

explanations without using ground truth for the attributions, since

this information rarely exists in realistic scenarios.

8 Conclusion
We compare multiple graph-agnostic and graph-specific explana-

tion methods on three state-of-the-art GNN models which identify

security vulnerabilities. For the assessment, we introduce a frame-

work combining the evaluation criteria stability, descriptiveness,

structural robustness, efficiency, sparsity and contrastivity. Taking

only the descriptive accuracy and runtime (efficiency) into account

for the three GNNmodels under test, CAM, IG and SmoothGrad out-

perform all other explainability techniques. However, explanation

methods for security-critical tasks, need to be thoroughly assessed

using all of the above criteria. We find that all explanation methods

have shortcomings in at least two criteria and therefore hope to

foster research for new explanation methods. When it comes to

meaningful, contrastive and sparse explanations that emphasize

the underlying graph topology we find graph-specific methods to

be superior.

To actually locate security vulnerabilities given human inter-

pretable explanations we thus suggest using GNNExplainer or PG-

Explainer. Our experimental results could guide development for

novel graph-specific explanation methods or to overcome current

shortcomings for GNNs in identifying security vulnerabilities.

Acknowledgments
This work has been funded by the Federal Ministry of Education and

Research (BMBF, Germany) in the project IVAN (FKZ: 16KIS1165K).

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman

Publishing Co., Inc., USA.

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learn-

ing to Represent Programs with Graphs. CoRR abs/1711.00740 (2017).

arXiv:1711.00740 http://arxiv.org/abs/1711.00740

[3] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2020. Dos

and Don’ts of Machine Learning in Computer Security. CoRR abs/2010.09470

(2020). arXiv:2010.09470 https://arxiv.org/abs/2010.09470

[4] Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques for

Graph Convolutional Networks. CoRR abs/1905.13686 (2019). arXiv:1905.13686

http://arxiv.org/abs/1905.13686

[5] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural

Code Comprehension: A Learnable Representation of Code Semantics. CoRR
abs/1806.07336 (2018). arXiv:1806.07336 http://arxiv.org/abs/1806.07336

[6] Chen Cai and Yusu Wang. 2020. A Note on Over-Smoothing for Graph Neural

Networks. CoRR abs/2006.13318 (2020). arXiv:2006.13318 https://arxiv.org/abs/

2006.13318

[7] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. 2021. BGNN4VD:

Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.

Information and Software Technology 136 (2021), 106576. https://doi.org/10.1016/

j.infsof.2021.106576

[8] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.

Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[9] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2019. Measuring

and Relieving the Over-smoothing Problem for Graph Neural Networks from

the Topological View. CoRR abs/1909.03211 (2019). arXiv:1909.03211 http:

//arxiv.org/abs/1909.03211

[10] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, and Hugh

Leather. 2020. ProGraML: Graph-based Deep Learning for Program Optimization

and Analysis. arXiv:2003.10536 [cs.LG]

[11] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-

Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. 2015. Con-

volutional Networks on Graphs for Learning Molecular Fingerprints. CoRR
abs/1509.09292 (2015). arXiv:1509.09292 http://arxiv.org/abs/1509.09292

[12] Mohd Ehmer and Farmeena Khan. 2012. A Comparative Study of White Box,

Black Box and Grey Box Testing Techniques. International Journal of Advanced
Computer Science and Applications 3 (06 2012). https://doi.org/10.14569/IJACSA.

2012.030603

[13] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program

Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041

[14] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907

http://arxiv.org/abs/1609.02907

[15] Dexter C. Kozen. 1977. Rice’s Theorem. Springer Berlin Heidelberg, Berlin,

Heidelberg, 245–248. https://doi.org/10.1007/978-3-642-85706-5_42

[16] Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Frederick

Klauschen, Klaus-Robert Müller, andWojciech Samek. 2015. On Pixel-Wise Expla-

nations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.

PLoS ONE 10 (07 2015), e0130140. https://doi.org/10.1371/journal.pone.0130140

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2017. Gated

Graph Sequence Neural Networks. arXiv:1511.05493 [cs.LG]

[18] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2021. Ex-

plainable AI: A Review of Machine Learning Interpretability Methods. Entropy
23, 1 (2021). https://doi.org/10.3390/e23010018

[19] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,

and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.

arXiv:2011.04573 [cs.LG]

[20] Niccolò Pancino, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini, Simone

Bonechi, Paolo Andreini, Franco Scarselli, Monica Bianchini, and Pietro Bongini.

2020. Graph Neural Networks for the Prediction of Protein-Protein Interfaces.

[21] Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and C´edric
Dangremont. 2019. A Manually-Curated Dataset of Fixes to Vulnerabilities of

Open-Source Software. In Proceedings of the 16th International Conference on
Mining Software Repositories. https://arxiv.org/pdf/1902.02595.pdf

[22] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. 2019. Explain-

ability Methods for Graph Convolutional Neural Networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 10764–10773.
https://doi.org/10.1109/CVPR.2019.01103

[23] Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang,

Wesley Qian, Kevin McCloskey, Lucy Colwell, and Alexander Wiltschko. 2020.

Evaluating Attribution for Graph Neural Networks. In Advances in Neural Infor-
mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 5898–5910. https://proceedings.

neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf

[24] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T.

Schütt, Klaus-Robert Müller, and Grégoire Montavon. 2020. Higher-Order Expla-

nations of Graph Neural Networks via Relevant Walks. arXiv:2006.03589 [cs.LG]

[25] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[26] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Impor-

tant Features Through Propagating Activation Differences. CoRR abs/1704.02685

(2017). arXiv:1704.02685 http://arxiv.org/abs/1704.02685

[27] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and MartinWatten-

berg. 2017. SmoothGrad: removing noise by adding noise. CoRR abs/1706.03825

(2017). arXiv:1706.03825 http://arxiv.org/abs/1706.03825

[28] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-

tin Riedmiller. 2015. Striving for Simplicity: The All Convolutional Net.

arXiv:1412.6806 [cs.LG]

[29] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution

for Deep Networks. arXiv:1703.01365 [cs.LG]

[30] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck.

2020. Evaluating Explanation Methods for Deep Learning in Security. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genoa, Italy,
158–174. https://doi.org/10.1109/EuroSP48549.2020.00018

[31] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. CoRR
abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[32] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. 2014. Modeling and Discovering

Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium on Security
and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

[33] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-

matic Inference of Search Patterns for Taint-Style Vulnerabilities. In 2015 IEEE
Symposium on Security and Privacy. 797–812. https://doi.org/10.1109/SP.2015.54

[34] Wenjie Yang, Houjing Huang, Zhang Zhang, Xiaotang Chen, Kaiqi Huang, and

Shu Zhang. 2019. Towards Rich Feature Discovery With Class Activation Maps

Augmentation for Person Re-Identification. (2019), 1389–1398. https://doi.org/

10.1109/CVPR.2019.00148

[35] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.

GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks.

CoRR abs/1903.03894 (2019). arXiv:1903.03894 http://arxiv.org/abs/1903.03894

[36] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2020. Explainability in

Graph Neural Networks: A Taxonomic Survey. CoRR abs/2012.15445 (2020).

arXiv:2012.15445 https://arxiv.org/abs/2012.15445

[37] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. 2016.

Top-down Neural Attention by Excitation Backprop. CoRR abs/1608.00507 (2016).

arXiv:1608.00507 http://arxiv.org/abs/1608.00507

[38] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. 2016. Learning Deep

Features for Discriminative Localization. CVPR (2016).

[39] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019.

Devign: Effective Vulnerability Identification by Learning Comprehensive Pro-

gram Semantics via Graph Neural Networks. CoRR abs/1909.03496 (2019).

arXiv:1909.03496 http://arxiv.org/abs/1909.03496

[40] Xiaogang Zhu, Shigang Liu, Xian Li, Sheng Wen, Jun Zhang, Seyit Ahmet

Çamtepe, and Yang Xiang. 2020. DeFuzz: Deep Learning Guided Directed Fuzzing.

CoRR abs/2010.12149 (2020). arXiv:2010.12149 https://arxiv.org/abs/2010.12149

https://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://arxiv.org/abs/2010.09470
https://arxiv.org/abs/2010.09470
https://arxiv.org/abs/1905.13686
http://arxiv.org/abs/1905.13686
https://arxiv.org/abs/1806.07336
http://arxiv.org/abs/1806.07336
https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2006.13318
https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.1016/j.infsof.2021.106576
https://arxiv.org/abs/1909.03211
http://arxiv.org/abs/1909.03211
http://arxiv.org/abs/1909.03211
https://arxiv.org/abs/2003.10536
https://arxiv.org/abs/1509.09292
http://arxiv.org/abs/1509.09292
https://doi.org/10.14569/IJACSA.2012.030603
https://doi.org/10.14569/IJACSA.2012.030603
https://doi.org/10.1145/24039.24041
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-642-85706-5_42
https://doi.org/10.1371/journal.pone.0130140
https://arxiv.org/abs/1511.05493
https://doi.org/10.3390/e23010018
https://arxiv.org/abs/2011.04573
https://arxiv.org/pdf/1902.02595.pdf
https://doi.org/10.1109/CVPR.2019.01103
https://proceedings.neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf
https://arxiv.org/abs/2006.03589
https://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1703.01365
https://doi.org/10.1109/EuroSP48549.2020.00018
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1109/CVPR.2019.00148
https://doi.org/10.1109/CVPR.2019.00148
https://arxiv.org/abs/1903.03894
http://arxiv.org/abs/1903.03894
https://arxiv.org/abs/2012.15445
https://arxiv.org/abs/2012.15445
https://arxiv.org/abs/1608.00507
http://arxiv.org/abs/1608.00507
https://arxiv.org/abs/1909.03496
http://arxiv.org/abs/1909.03496
https://arxiv.org/abs/2010.12149
https://arxiv.org/abs/2010.12149

A Runtime Evaluation

Method Devign ReVeal Vulas

EB 0.11 0.17 0.07
GB 0.10 0.16 0.09

Gradient 0.10 0.16 0.091

LRP 0.14 0.207 0.12

CAM 0.12 0.17 0.09

SmoothGrad 1.66 1.72 1.79

GradCAM 0.11 0.16 0.08

Linear-Approx 0.11 0.16 0.09

IG 1.63 2.52 1.52

GNNExplainer 3.99 5.06 8.88

PGE-Training 4.36 50.14 3.20

PGE-Inference 1.22 47.04 3.06

Graph-LRP 22.24 33.01 19.10

Table 4: Average runtime (in s) per single graph instance.

B Model Comparison

Model Devign BGNN4VD Reveal

Graph CPG Bidirectional CCG CPG

Network Type 6-GGNN 8-GGNN 8-GGNN

Pooling 1D-Conv 1D-Conv Maxpooling

Prediction Head PEM
8

MLP MLP

Loss BCE + L2-Reg BCE Triplet Loss

Table 5: Notable differences between the models.

C Datasets
In the next three subsections we give a more detailed introduction

to the datasets.

C.1 Devign
The Devign dataset consists of manually labeled C functions gath-

ered from Qemu and FFmpeg open source projects [39]. It consists

of 6000 malicious and 6000 benign samples. All bugs have been

found by scraping the commit history for certain keywords includ-

ing injection and DoS. Often vulnerabilities consist of out of bounds
or other memory related security issues. For example this

9
or that

10
.

Since FFmpeg and Qemu are part of the OSS-Fuzz project and are

continuously fuzzed, such vulnerabilities are oftentimes detected

during that process.

8
Pairwise Embedding Multiplication

9
https://github.com/ffmpeg/ffmpeg/commit/06e5c791949b63555aa4305df6ce9d2ffa45ec90

10
https://github.com/ffmpeg/ffmpeg/commit/5a2a7604da5f7a2fc498d1d5c90bd892edac9ce8

C.2 Reveal
Reveal consists of Debian security vulnerabilities taken from its

tracker
11

and of Chromium vulnerabilities taken from its issue

tracking tool
12
. Only bugs that are labeled security with a existent

patch are scraped. Assuming a file has been patched, all its func-

tions are extracted and labeled benign. Functions that differ from
before and after fix are labeled malicious. Therefore, the dataset is
unbalanced and consists of more benign than malicious functions.

1 static void eap_request(
2 eap_state *esp , u_char *inp , int id, int len) {
3 ...
4 if (vallen < 8 || vallen > len) {
5 ...
6 break;
7 }
8 /* FLAW: 'rhostname ' array is vulnerable to overflow.*/
9 - if (vallen >= len + sizeof (rhostname)){
10 + if (len - vallen >= (int)sizeof (rhostname)){
11 ppp_dbglog (...);
12 MEMCPY(rhostname , inp + vallen ,
13 sizeof(rhostname) - 1);
14 rhostname[sizeof(rhostname) - 1] = '\0';
15 ...
16 }
17 ...
18 }

Listing 1: Reveal example vulnerability CVE-2020-8597

In Listing 1 a sample vulnerability form the Reveal dataset taken

from their original publication can be seen [8]. The sample shows

a buffer overflow vulnerability due to a logic flaw in the point to
point protocol daemon with the corresponding fix (line 9 and 10).

C.3 Vulas
Vulas is a collection of CVEs associated with large open source

Java projects and their respective fix-commits [21]. We extract each

changed function before and after the actual patch together with

multiple randomly chosen functions from the same repository. The

newest vulnerability in our dataset is CVE-2020-9489
13

and the

oldest one CVE-2008-1728
14
. A sample security issue can be seen

in Figure 3.

11
https://security-tracker.debian.org/tracker/

12
https://bugs.chromium.org/p/chromium/issues/list

13
https://www.suse.com/security/cve/CVE-2020-9489.html

14
https://nvd.nist.gov/vuln/detail/CVE-2008-1728

	Abstract
	1 Introduction
	2 Neural Networks on Code Graphs
	3 Explaining Machine Learning
	4 Evaluating Explanations of GNNs
	5 Experimental Study
	5.1 Setup
	5.2 Results

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Runtime Evaluation
	B Model Comparison
	C Datasets
	C.1 Devign
	C.2 Reveal
	C.3 Vulas

