
TagVet: Vetting Malware Tags using
Explainable Machine Learning

Lukas Pirch∗
Technische Universität
Braunschweig, Germany

Alexander Warnecke∗
Technische Universität
Braunschweig, Germany

Christian Wressnegger
Karlsruhe Institute of Technology

Karlsruhe, Germany

Konrad Rieck
Technische Universität
Braunschweig, Germany

ABSTRACT

When managing large malware collections, it is common practice
to use short tags for grouping and organizing samples. For example,
collected malware is often tagged according to its origin, family,
functionality, or clustering. While these simple tags are essential
for keeping abreast of the rapid malware development, they can
become disconnected from the actual behavior of the samples and,
in the worst case, mislead the analyst. In particular, if tags are auto-
matically assigned, it is often unclear whether they indeed align
with the malware functionality. In this paper, we propose a method
for vetting tags in malware collections. Our method builds on re-
cent techniques of explainable machine learning, which enable us
to automatically link tags to behavioral patterns observed during
dynamic analysis. To this end, we train a neural network to classify
different tags and trace back its decision to individual system calls
and arguments. We empirically evaluate our method on tags for
malware functionality, families, and clusterings. Our results demon-
strate the utility of this approach and pinpoint interesting relations
of malware tags in practice.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation.

KEYWORDS

Malicious software, dynamic analysis, clustering

ACM Reference Format:

Lukas Pirch, Alexander Warnecke, Christian Wressnegger, and Konrad
Rieck. 2021. TagVet: Vetting Malware Tags using Explainable Machine
Learning. In 14th European Workshop on Systems Security (EuroSec’21), April

26, 2021, Online, United Kingdom. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3447852.3458719

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSec’21, April 26, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8337-0/21/04. . . $15.00
https://doi.org/10.1145/3447852.3458719

1 INTRODUCTION

Despite notable efforts in research, malware still poses a signifi-
cant threat to computer users. Coping with the sheer amount of
new malware variants alone is already a challenging and daunt-
ing task. Large security companies, for example, are required to
process several hundred thousands of new samples per day [36].
This plethora of malicious code makes it hard to keep abreast of
current malware development and update protection mechanisms
in time. To alleviate this problem, it is common practice to flag
incoming samples with short tags that label their origin, format,
behavior, or family. These simple tags provide an indispensable
tool for maintaining large collections and help focus investigations
to particular malware files. As an example, VirusTotal features an
extensive search engine for finding such tags in their database of
malware samples [37].

Malware tags, however, greatly differ in purpose and quality.
While a few tags are manually assigned based on careful reverse
engineering, most tags are automatically derived from available
information, such as file headers [40, 41], anti-virus labels [31, 32],
clusterings [12, 15], and threat intelligence [10, 30]. Although these
generated tags provide useful clues for analysis, they may become
disconnected from the actual behavior of the malware. For example,
tags derived by an imprecise YARA rule [1] might incorrectly flag
functionality that is actually not present in the samples. When cu-
rating a large collection of malware, it is thus often unclear whether
and how automatically generated tags align with the behavior of
the samples.

In this paper, we propose TagVet1, a method for vetting and
explaining tags in malware collections. Our method builds on recent
techniques of explainable machine learning, which enable us to
automatically link tags to behavioral patterns observed during
dynamic analysis. To this end, we devise a convolutional neural
network for predicting malware tags from monitored system calls
and their arguments. By tracing back these predictions through the
network, our method determines why a tag has been predicted and
uncovers its relation to specific system calls. As a result, TagVet
links tags to behavioral patterns in retrospective, thereby explaining
their semantic relations. Our approach helps to improve the quality
of malware collections by exposing errors and inconsistencies in
the tagging process even if the process itself is not available.

We empirically evaluate the efficacy of TagVet in a series of
experiments with real-world malware and tags for functionality,

1Source code will be released at https://github.com/lpirch/tagvet.git

https://doi.org/10.1145/3447852.3458719
https://doi.org/10.1145/3447852.3458719
https://doi.org/10.1145/3447852.3458719
https://github.com/lpirch/tagvet.git

EuroSec’21, April 26, 2021, Online, United Kingdom Pirch et al.

exec	“foo.exe”

connect	8.8.8.8

mutex	“barfoo”

Tagged malware Behavior representation Surrogate learning model Behavioral patterns

exec	“foo.exe”

connect	8.8.8.8

mutex	“barfoo”
≈

(1) Behavior monitoring
and representation

(2) Tag learning
and prediction

(3) Explanation
and aggregation

Figure 1: Schematic depiction of our method TagVet. (a) Malware is dynamically analyzed, (b) its tags are used to train a surrogate
learning model and (c) explanations of the predicted tags are aggregated to behavioral patterns.

families, and clusters. First, we show that our method enables to
learn characteristics of tags from malware behavior and predict
them with high accuracy. For all considered tag types, TagVet
yields an accuracy of 92–97 %. Second, we demonstrate how our
method allows for linking tags to system calls and their arguments,
thus identifying associated behavioral patterns. For each of the tag
types, we quantitatively and qualitatively investigate these behav-
ioral patterns. While for some tags, the patterns align perfectly
with our expectations, we also unveil interesting and inconsistent
relations of system calls to tags, indicating the need for regularly
vetting the tagging process in practice.

2 RELATEDWORK

Numerous techniques have been proposed for collecting, analyzing,
and detecting different forms of malicious code [e.g., 4–6, 17, 18].
Our approach extends this line of research by enabling explanation
and vetting of malware tags. Our method TagVet is thus related
to work on malware analysis and explainable machine learning,
which we briefly discuss in the following.

2.1 Malware Analysis and Tags

Techniques for malware analysis can be roughly categorized into
static and dynamic approaches. The former comprise all techniques
that inspect malicious code without executing it [e.g., 12, 22, 24, 33].
As static analysis suffers from inherent limitations [see 21], dynamic
approaches need to complement them and expose functionality
only observable at run-time [e.g., 7, 9, 16, 19, 26]. Several static
and dynamic approaches can be used to generate tags for malware
automatically. For example, methods for clustering are a common
tool for assigning cluster tags to malware files [e.g., 5, 15, 23, 28].
Similarly, information from file headers and metadata provides a
valuable source for generating static tags [e.g., 40, 41].

Another branch of malware research has been concerned with
deriving family tags from anti-virus labels. Since these labels are
notoriously inconsistent among virus scanners, these methods ap-
ply different strategies for normalizing and consolidating the la-
bels [e.g., 13, 14, 31, 32]. Recently, this strain of research has been
further expanded with methods for deriving tags for general mal-
ware categories [32], tagging specific capabilities [25] and predict-
ing functionality using threat intelligence [30].

Despite the breadth of this prior work, however, the retrospective
explanation of tags has not been considered in malware research
so far. Most tagging methods are black-box systems and opaque
to the practitioner. Our approach TagVet addresses this gap and
enables to vet tags from static, dynamic, and metadata analysis.

2.2 Explainable Machine Learning

TagVet rests on recent techniques of explainable machine learning.
These techniques aim at explaining how a learning model arrives
at its decisions. To achieve this, a relevance map is derived that
indicates how each input feature contributes to a decision. These
maps are typically determined using gradients [e.g., 3, 34, 35] or
approximations of the learningmodel [e.g., 11, 20, 27]. For a general
discussion of explanation methods in computer security, we refer
the reader to the overview article by Warnecke et al. [39].

For our method, we employ layer-wise relevance propagation

(LRP) [3], an effective and general-purpose approach for explaining
neural networks and other learning models. Note that LRP as well
as all other methods for explainable learning inherit the weaknesses
of the underlying learning models and thus are vulnerable to ad-
versarial examples [8, 42]. In the context of our approach, however,
such attacks play a minor role, as there exist more potent means
for evading malware analysis in general.

3 APPROACH

Our method builds on the three analysis phases shown in Figure 1.
First, it executes tagged malware samples in a sandboxed environ-
ment and encodes the monitored behavior in a way suitable for
analysis (Section 3.1). Second, it trains a convolutional neural net-
work as a surrogate model for the tagging process, such that tags
can be predicted from monitored behavior (Section 3.2). Finally,
our method uses layer-wise relevance propagation to explain the
network’s predictions and link the tags back to patterns in the
monitored behavior (Section 3.3).

3.1 Behavior Monitoring and Representation

In the first stage, malware samples are executed in a sandboxed en-
vironment to monitor their behavior. We employ VMRay Analyzer,
a hypervisor-based sandbox for the Windows platform [38] that
records all system calls to operating system libraries and the kernel.
This dynamic analysis yields a behavior report for each executed
sample that comprises lists (threads) of system calls with respective
arguments. Our analysis hence operates on the boundary of the
operating system and characterizes malware through its interaction
with the host API.

Consolidation. As the sandbox reports contain very fine-granular
data from the operating system state, we apply different consoli-
dation steps before analyzing the behavior with a neural network.
First, volatile call arguments, such as memory addresses and pro-
cess identifiers, depend only on the system state and can safely
be ignored. Second, we observe several function call arguments

TagVet: Vetting Malware Tags using Explainable Machine Learning EuroSec’21, April 26, 2021, Online, United Kingdom

Call 1

Arg 1

Arg 2

Arg 3 Tag 1

Tag 2

Tag 3

Call 2

Arg 1

pad
pad

Call 1

Arg 1

Arg 2

Arg 3

Input
layer

Embedding and
convolution layers

Max pooling
and full layer

Tag 1

Tag 2

Tag 3

Output
layer

Tag explanation

Call l
Arg 1

pad
pad

…

…

Figure 2: CNN for tag prediction: The first convolution captures
system calls with their arguments, the second convolution summa-
rizes multiple calls and the last layer returns tag probabilities.

consisting of rare substrings, such as temporary file names. To con-
solidate these, we split each argument using appropriate delimiters
(“\” for file and registry paths and “.” for network addresses) and
analyze the frequency of the resulting substrings. Substrings ap-
prearing in less than 10 % of the reports are then replaced with a
wildcard symbol “*”. In our evaluation, this replacement reduces
the number of distinct substrings by 99.7 %, while still preserving
most information relevant to the analyst.

Representation of behavior. To achieve a unified representation
of the behavior described in the sandbox reports, we consider each
report as a sequence of system calls and their arguments. For sim-
plicity, we ignore the relation of threads in this representation, as
the convolutional neural network used in TagVet can focus on
local patterns in the data. Formally, we map a report to a sequence
𝑥 = (𝑥1, . . . 𝑥𝑙) of 𝑙 tokens, where each token either corresponds to
a system call or an argument. As the number of arguments varies
between calls, we pad all arguments to a fixed number 𝑛 using a
special pad token. Consequently, if the report contains 𝑠 system
calls, the final sequence 𝑥 has a length of 𝑙 = 𝑠 · (1 + 𝑛).

3.2 Tag Learning and Prediction

For the next stage of TagVet, we require a machine-learning model
that predicts tags for a given behavior. We refer to this model as a
surrogate model as it mimics the original tagging process. While sev-
eral approaches might be applicable for learning to predict tags, we
employ convolutional neural networks (CNNs) that can be precisely
tailored to the problem at hand.

Convolutional neural networks. Generally, a CNN maps a se-
quence 𝑥 to a vector 𝑧 where each entry 𝑧𝑖 corresponds to the
probability that 𝑥 belongs to class 𝑐𝑖 . To this end, a CNN uses mul-
tiple convolutional kernels 𝐾1, . . . , 𝐾𝑝 where each kernel consists
of a weight vector, which are optimized during training as the pa-
rameters of the network. By design, CNNs extract local patterns
from data, making them a suitable choice for classification tasks
over sequences.

Convolution of system calls.We design the CNN for our approach
explicitly to process the encoded malware behavior. The input to
the network consists of a padded sequence of tokens reflecting
system calls and arguments. Hence, we compose the first convolu-
tional layer of𝑚1 different filters of size 𝑛 + 1 which are slid over
the input, such that they process a complete system call with its
argument at a time (Figure 2, left). To provide vector inputs for this
convolution, we pass the tokens through an embedding layer which
is also learned during training. The second convolutional layer has
𝑚2 filters and performs convolutions on the output of the first layer
(Figure 2, middle). Hence, this layer infers dependencies between
different system calls and captures broader patterns in malware
behavior. Since the size of this convolution depends on the input
length we employ a max-pooling layer that maps the output of the
second convolutional layer to a vector of size𝑚2. This vector is
finally fed to a fully-connected layer that returns probabilities for
the tags of the input sample (Figure 2, right).

3.3 Generating Explanations

Once a surrogate model has been trained, we are able to apply tech-
niques of explainable machine learning to interpret its prediction
process and unveil behavior associated with the tags. In particular,
our method TagVet assigns each token 𝑥𝑖 of the sequence 𝑥 a rele-
vance score 𝑅𝑖 , indicating its importance for predicting a tag. As
the entries correspond to system calls and arguments, this process
enables us to pinpoint behavior relevant for specific tags.

Layerwise relevance propagation. Following the recommendations
of Warnecke et al. [39], we use LRP [3] to compute the relevance
scores in our approach. LRP performs a backwards-pass through a
neural network from the output to the input, such that the following
conservation property holds,∑

𝑖

𝑅1𝑖 =
∑
𝑖

𝑅2𝑖 = · · · =
∑
𝑖

𝑅𝐿𝑖 (1)

where 𝑅 𝑗
𝑖
denotes the relevance score assigned to the 𝑖-th unit in

the 𝑗-th layer. This property ensures that the output score of the
network is completely transferred to the input and results in concise
explanations [2]. The sign of 𝑅 𝑗

𝑖
can be either positive (speaking for

the classification) or negative (speaking against it). In the remainder
of this paper, we thus normalize the relevance scores to lie in the
interval [−1, 1].

As an example, Table 1 shows a simplified snippet of an expla-
nation generated for the behavior tag “creates process with hidden

window” assigned by the VMRay Analyzer (see Section 4). The
relevance scores are indicated by blue shading. The system call
argument create_suspended obtains the highest relevance, as it is
typically used to create a process for a background window. Other
highlighted tokens, e.g. sw_hide or show_window, also fit perfectly to
the tag, indicating that it matches the defined behavior well.

Aggregating behavioral patterns. The tokens with the strongest
influence alone can be meaningless without the surrounding con-
text. Imagine, for example, that the most relevant token for a tag
corresponds to the argument “true”. As a remedy, we propose an
aggregation scheme for the explanations of TagVet, tailored to the
context of program behavior. To represent the context of a token,

EuroSec’21, April 26, 2021, Online, United Kingdom Pirch et al.

Table 1: Explanation snippet for behavior tag “Creates pro-

cess with hidden window”. Relevance is shown by blue shading.

Id Token Name Id Token Name

0 proc_create
1 symbol_name 2 createprocess
3 creation_flags 4 create_suspended
5 show_window 6 sw_hide
7 success 8 true

we use a notation inspired by the Python programming language
that builds on named arguments.

For each relevant token, we identify the related system call and
then compose an explanation describing this call with a named
argument. As an example, for the snippet in Table 1, we write

proc_create(in:creation_flags=“create_suspended”),
indicating that the relevant token create_suspended belongs to the
system call proc_create. The prefix in: denotes an input argument
whereas out: signifies a return value. To generate a behavioral
pattern from such calls, we compute the surroundings of the 10most
relevant tokens in every sample and count their occurrences in the
entire dataset. Then, we average the relevance values of the single
aggregations and sort them by their occurrence in descending order
to obtain behavioral patterns.

4 EVALUATION

We proceed to evaluate the effectivity of TagVet in a series of
experiments with real-world malware. In particular, we explore how
our method learns to predict tags and whether its explanations help
to understand the underlying malware behavior. To this end, we
first present a quantitative evaluation of our approach (Section 4.2)
and then qualitatively discuss four case studies (Section 4.3).

4.1 Experimental Setup

We collect malware from the VirusShare repository [29] and focus
on samples that target the Windows platform. In particular, we
retrieve a recent subset of 65,536 samples and extract all valid PE
files, resulting in 6,598 malware samples. Each of these samples is
then labeled by multiple virus scanners and we use AVClass [31] to
determine their family labels. As we intend to simulate the vetting
process in practice, we filter out very small families with less than
10 samples, resulting in 5,217malware samples from 71 families. Fi-
nally, we execute each sample in the VMRay Analyzer sandbox [38]
with simulated user traces and internet connectivity to monitor as
much malicious behavior as possible.

Malware tags. We consider three types of tags for our experi-
ments: First, we use the family labels assigned by AVClass as family

tags. Second, the VMRay Analyzer comes with 60 predefined threat
indicators that are matched during monitoring and result in sand-

box tags, such as “creates process with hidden window”. Third, we
conduct a behavior-based clustering similar to Rabadi and Teo [26].
In particular, we automatically group the samples using complete-
linkage clustering based on tuples of system calls and arguments.

To find a high-quality clustering, we evaluate the parameter
space and use the elbowmethod to determine peaks in the silhouette

score for determining the optimal number of clusters. Figure 3
shows the mean Silhouette Coefficient and the Adjusted Rand Index
for different number of clusters, and the chosen configuration as
dashed line at 30 clusters.

0 20 40 60 80 100
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

A
dj

us
te

d
R

an
d

In
de

x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
S

ilh
ou

et
te

 C
oe

ffi
ci

en
t

Adjusted Rand Index
Mean Silhouette Coefficient

Figure 3: Mean Silhouette Coefficient and Adjusted Rand In-

dex for different clusterings.

Setup of TagVet.After consolidation, our dataset comprises 5,217
sequences with 4,241 unique tokens. We train the CNN model on
this data using an embedding dimension of 128 and a fixed number
of 21 system call arguments. The filter sizes of the two convolutional
layers are 21 and 5, respectively, and we use 64 filters for each layer.
The model is trained with the TensorFlow library using the Adam
optimizer and the categorical cross-entropy loss function.

4.2 Quantitative Evaluation

We start our evaluation by first investigating the prediction perfor-
mance of TagVet and the quality of the generated explanations. For
these experiments, we split our dataset into a training, validation,
and test partition using 80 %, 10 %, and 10 % of the data, respectively.
We train the CNN on the training data and use the validation par-
tition to calibrate all model parameters. The final model is then
applied to the (unseen) test data. This procedure is repeated five
times, and the performance is averaged.

Prediction performance. We measure the prediction performance
of TagVet using three standard metrics: First, we use the accuracy
to determine how many samples are correctly classified. Next, we
measure the area under the ROC curve, which describes the relation
between true-positive and false-positive predictions. Finally, we
report the area under precision-recall curve that provides a view on
the precision of our approach. Since these metrics are designed for
binary classification, we use them on every tag class separately and
compute a weighted average. That is, tag classes that occur often
have a proportionally higher weight.

Table 2 shows the prediction performance of TagVet. We ob-
serve that the CNN can successfully predict the different tags for
all types with high accuracy. The best results are achieved for the
sandbox tags, likely because these are directly derived from the
behavior monitored in the sandbox. The family and clustering tags,

TagVet: Vetting Malware Tags using Explainable Machine Learning EuroSec’21, April 26, 2021, Online, United Kingdom

Table 2: Prediction performance of TagVet. All performance
metrics are averaged over the tag classes.

Tag Class # Tags Accuracy AUC (ROC) AUC (PR)

Sandbox 60 0.97 ± 0.002 0.99 ± 0.001 0.98 ± 0.002
Family 71 0.94 ± 0.007 0.96 ± 0.007 0.85 ± 0.015
Clustering 30 0.92 ± 0.019 0.99 ± 0.004 0.95 ± 0.013

0 500 1000 1500 2000
k

0.4

0.6

0.8

1.0

D
es

cr
ip

tiv
e

A
cc

ur
ac

y

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0

D
es

cr
ip

tiv
e

S
pa

rs
ity

Clustering
Families
Sandbox

Figure 4: Descriptive accuracy and sparsity of TagVet.

on the other hand, also yield a strong accuracy. The overall perfor-
mance of the CNN is excellent and justifies the usage of explainable
learning for vetting tags in our approach.

Explanation quality. To evaluate the explanations generated by
TagVet, we use the descriptive accuracy (DA) and the descriptive
sparsity (DS) [39]. The DA measures how well an explanation re-
flects features contributing to a prediction. Given the predicted
class 𝑐𝑖 , the 𝑘 most relevant features 𝑥1, . . . , 𝑥𝑘 , and a constant
replacement value 𝜖 , this measure is defined as

DA𝑘 (𝑥, 𝑓) = 𝑓 (𝑥1 = 𝜖, . . . , 𝑥𝑘 = 𝜖)𝑐𝑖 , (2)

that is, it returns the classification score without the 𝑘 most relevant
features. With increasing 𝑘 , a good explanation will quickly drop
in descriptive accuracy, as the relevant features are also highly
important for obtaining a correct prediction.

The descriptive sparsity complements the descriptive accuracy
by measuring how many values of the explanation are close to zero
and thus can be ignored. Concretely, the sparsity computes the
mass around zero (MAZ), given by

MAZ(𝑡) =
∫ 𝑡

−𝑡
ℎ(𝑥)dx, 𝑡 ∈ [0, 1] (3)

where ℎ is the normalized histogram of the relevance map. A good
explanation reaches a high sparsity at a small value of 𝑡 , that is, only
very few features receive a high relevance and thus the explanation
can be better interpreted by a human analyst.

Figure 4 shows the values of DA and DS for all tag classes, where
we choose the pad token for 𝜖 when computing DA. The DA score
drops quickly for all tag classes when the most important features
are removed. For example, removing the top 50 features reduces the
accuracy by 16.7 %, 22.4 % and 14.4 % for the clustering, family and
sandbox tags. Considering the large number of different tags and
that features may only be important for a fraction of the classes,
this result indicates a high quality of the explanations. Moreover,
we find that the descent in the curve for the sandbox tags is not as
steep as for the other ones. We conjecture that this effect stems from

the more complex tagging process, as one sample can be assigned
multiple sandbox tags. For the DS score, we observe that all curves
reach high values at 𝑡 = 0.02. Hence, more than 90 % of the features
are irrelevant and only a few important ones form the explanations
for the different tags.

4.3 Qualitative Evaluation

The previous experiments demonstrate the quality of the learned
model, yet the generated explanations need to also be sensible from
an analyst’s perspective. We therefore perform four qualitative case
studies to verify the semantic coherence of the extracted patterns
with human expectations.

Sandbox tags.As the first case study, we inspect a random sample
of behavioral patterns for the 60 sandbox tags. We observe that
all patterns align well with the names of the underlying threat
indicators and there is a clear relation between behavior and the
tag semantics. Table 3 shows an example for the tag “attempts to

connect to unavailable TCP servers”. As expected, the tag is supported
by the socket connection function (line 1) in combination with the
unsuccessful invocation attribute (line 3), resulting in a concise
summary of the threat indicator matched by the sandbox.

Table 3: Behavioral pattern for the sandbox tag “Attempts to

connect to unavailable TCP servers”.

Id Tokens in context

1 sck_connect(*)
2 sck_connect(in:post_symbol_name=“connect”)
3 sck_connect(out:success=“false”)
4 sck_connect(in:remote_port=“*”)

Family tags. Regarding the malware families, we observe much
more specificity in the explanations. This makes sense because
generic behavioral patterns such as accessing external IP addresses
are occurring across different families and, therefore, are not useful
for their explanation. In this case study, we examine the Fareit mal-
ware family, for which Table 4 shows the behavior explanation. We
find that creating a window with windprocparameter=0 as argument
appears among the top ten most relevant features in 79 % of the ex-
planations of the family’s samples. Also, 78 % of the Fareit samples
sleep for exactly 25 s, whereas instances from the Autoit malware
family, for example, typically sleep only for 750ms. Judging by
the steep drop in accuracy when removing these features (see Fig-
ure 4), we conclude that the rather detailed behavioral patterns are
characteristic for specific malware families and are indeed suitable
candidates for behavioral detection rules.

Cluster tags. Third, we examine the explanations for cluster tags.
When analyzing a random sample of the 71 cluster tags, we observe
that several of them strongly overlap with family tags, which indi-
cates a successful clustering procedure. However, a few behavioral
patterns also deviate from the respective families. As an example,
Table 5 shows the output for cluster #15, which contains system
calls for reading out environment variables and sending an HTTP
request to “ipv4bot.whatismyipaddress.com”. Interestingly, the pre-
sented tokens are not identical to the ones from the respective

EuroSec’21, April 26, 2021, Online, United Kingdom Pirch et al.

Table 4: Behavioral pattern for the malware family Fareit.

Id Tokens in context

1 wnd_create(in:wndproc_parameter=“0”)
2 wnd_create(in:width=“320”)
3 sleep(in:milliseconds=“25000”)
4 sleep(out:milliseconds_text=

“25000 milliseconds (25.000 seconds)”)
5 wnd_create(in:class_name=“t__304124810”)

malware family but correspond to it semantically: The Gandcrab
malware scans the user environment and determines its IP address
when executed. Furthermore, we randomly select 10 reports from
that cluster to see whether the wildcard in the file system path
conceals relevant information. This is not the case as the respective
function call occurs but the wildcard only replaces an MD5 hash
value in all of the inspected files.

Table 5: Behavioral pattern for the cluster #15.

Id Tokens in context

1 env_get(in:symbol_name=“getenvironmentvariable”)
2 file_create(in:file_name_orig=“c:\users

\%USERNAME%\desktop*.exe”)
3 str_len(in:string=“pridur”)
4 file_create(in:file_name=“c:\users

\%USERNAME%\desktop*.exe”)
5 open_http_request(in:url=

“ipv4bot.whatismyipaddress.com/*”)
6 open_connection(in:server=

“ipv4bot.whatismyipaddress.com”)

Tagging inconsistencies. In addition, we investigate how tag ex-
planations enable human analysts to reason about the quality of
tags. In this final case study, we examine tagging inconsistencies
between the family and behavior tags. That is, finding cases in
which for example one family tag is split across multiple behavioral
clusters or vice-versa. Analyzing the explanations from the CNN
operating on behavior reports can then give evidence about the dis-
crepancies between behavioral tags and the ones generated using
different analyses. For instance, anti-virus products create family
tags based on various sources of information, including file meta-
data and static analysis. Hence, we expect some family explanations
to contain static artifacts when malware cannot be discriminated
from a behavioral perspective alone.

We find this to be the case for the AutoIt family. The name refers
to a Windows scipting language which suggests that the family
tagging process is likely based on malware being written in that
language. However, this would not be directly observable in be-
havioral reports which is confirmed by the following two findings.
First, the Autoit family explanation in Table 6 shows that the CNN
relies on an artifact for correct classification: The window creation
function in line 5 contains the family name in one of its arguments.
Most interestingly, this artifact is of high relevance when training
the CNN to predict family tags but never occurs in explanations

for behavior tags. A second finding is that the 136 AutoIt samples
are scattered across 15 behavioral clusters. The explanation for the
cluster with the largest number of AutoIt samples (44/136) indeed
contains some related behavior. According to the cluster explana-
tion, loading the functions “VarSub”, “VarMod” and “VarDiv” from
a dynamically linked library accounts for three of the top five most
relevant features and is present in more than 99 % of the explana-
tions. These functions are used for basic arithmetic operations, are
part of the Windows API (oleauto.h) and are internally used by
the AutoIt language in version 3 which coincides with the artifact
observed in Table 6. Yet, the functions are not exclusively available
to this scripting engine and hence might be used by other malware
families as well. Furthermore, the AutoIt samples comprise only
14.8 % of all samples in the analyzed cluster and explanations for
other clusters with AutoIt samples contain no relatable informa-
tion at all. We conclude from these weak behavioral indicators and
the lack of explanation coherence between this family and the re-
lated clusters that TagVet is able to give evidence for reasoning
about whether certain family tags are sensible from a behavioral
perspective.

Table 6: Behavioral pattern for the malware family AutoIt.

Id Tokens in context

1 sys_sleep(in:milliseconds=750)
2 sys_sleep(out:milliseconds_text=

“750 milliseconds (0.750 seconds)”)
3 wnd_create(in:wnd_proc_parameter=0)
4 sys_sleep(in:post_symbol_name=“settimer”)
5 wnd_create(in:window_name=“autoit v3”)

Table 7: Behavioral pattern for the cluster #28.

Id Tokens in context

1 wnd_create(in:wnd_proc_parameter=0)
2 mod_get_proc_address(in:module_name=

“c:\windows\syswow64\user32.dll”)
3 mod_get_proc_address(in:function=“VarSub”)
4 mod_get_proc_address(in:function=“VarMod”)
5 mod_get_proc_address(in:function=“VarDiv”)

Our findings demonstrate the utility of our approach: Depending
on the particular tags (sandbox, family, or clustering), only those
features are identified that are relevant in the particular context. As
a result, a cluster only partially overlapping with a malware family
yields a different behavioral pattern and thus helps to understand
what characteristics the tags reflect.

5 CONCLUSION

The ever-increasing amount of malware instances and novel strains
of malicious code calls for effective strategies for organizing newly
discovered samples. Simple tags can be a powerful tool to quickly
categorize and sort new variants. The efficacy of this strategy, how-
ever, hinges on the quality of the assigned tags. With TagVet,
we provide a method for vetting tags in malware collections. Our

TagVet: Vetting Malware Tags using Explainable Machine Learning EuroSec’21, April 26, 2021, Online, United Kingdom

method enables to unveil the malware behavior associated with a
tag and allows an analyst to recognize inconsistencies in the tagging
process. We demonstrate the utility of this approach for different
types of tags used in day-to-day malware analysis. Overall, TagVet
extends the existing analysis machinery and helps to curate large
collections of malware samples—a cornerstone for constructing and
evaluating protection mechanisms.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the German Fed-
eral Ministry of Education and Research (BMBF) under the projects
VAMOS (FKZ 16KIS0534) and IVAN (FKZ 16KIS1167). Furthermore,
we acknowledge funding by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2092 CASA-390781972 and by the Ministerium für
Wirtschaft, Arbeit und Wohnungsbau Baden-Wuerttemberg under
the project Poison-Ivy.

REFERENCES

[1] V. M. Alvarez. Yara – the pattern matching swiss knife for malware researchers.
https://virustotal.github.io/yara/. visited March 2021.

[2] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In Proc. of

International Conference on Learning Representations (ICLR), 2018.
[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On

pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE, 10(7), July 2015.

[4] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated classification and analysis of internet malware. In Proc. of International
Symposium on Research in Attacks, Intrusions and Defenses (RAID), pages 178–197,
2007.

[5] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,
behavior-based malware clustering. In Proc. of the Network and Distributed System
Security Symposium (NDSS), 2009.

[6] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install: The
commoditization of malware distribution. In Proc. of USENIX Security Symposium,
2011.

[7] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether: malware analysis via
hardware virtualization extensions. In Proc. of ACM Conference on Computer and

Communications Security (CCS), pages 51–62, 2008.
[8] A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Müller, and

P. Kessel. Explanations can be manipulated and geometry is to blame. In
Advances in Neural Information Proccessing Systems (NIPS), 2019.

[9] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (CSUR), 44(2):
1–42, 2012.

[10] H. Gascon, B. Grobauer, T. Schreck, L. Rist, D. Arp, and K. Rieck. Mining attributed
graphs for threat intelligence. In Proc. of the ACM Conference on Data and

Applications Security and Privacy (CODASPY), pages 15–22, Mar. 2017.
[11] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna: Explaining deep

learning based security applications. In Proc. of ACM Conference on Computer

and Communications Security (CCS), pages 364–379, 2018.
[12] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin. Mutantx-s: Scalable malware

clustering based on static feature. In Proc. of USENIX Annual Technical Conference,
pages 187–198, 2013.

[13] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon. On the lack of
consensus in anti-virus decisions: Metrics and insights on building ground truths
of android malware. In Proc. of International Conference on Detection of Intrusions

and Malware & Vulnerability Assessment (DIMVA), pages 142–162, 2016.
[14] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein,

and L. Cavallaro. Euphony: Harmonious unification of cacophonous anti-virus
vendor labels for Android malware. In Proc. of International Conference on Mining

Software Repositories (MSR), pages 425–435, 2017.
[15] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing malware for

scalable triage and semantic analysis. In Proc. of ACM Conference on Computer

and Communications Security (CCS), pages 309–320, 2011.
[16] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. yong Zhou, and X. Wang.

Effective and efficient malware detection at the end host. In Proc. of USENIX

Security Symposium, pages 351–366, 2009.
[17] C. Kolbitsch, B. Livshits, B. G. Zorn, and C. Seifert. Rozzle: De-cloaking internet

malware. In Proc. of IEEE Symposium on Security and Privacy, pages 443–457,
2012.

[18] P. Kotzias, L. Bilge, and J. Caballero. Measuring pup prevalence and pup distribu-
tion through pay-per-install services. In Proc. of USENIX Security Symposium,
pages 739–756, 2016.

[19] M. Lindorfer, C. Kolbitsch, and P.M. Comparetti. Detecting environment-sensitive
malware. In Proc. of International Symposium on Research in Attacks, Intrusions

and Defenses (RAID), pages 338–357, 2011.
[20] S. M. Lundberg and S.-I. Lee. A unified approach to interpretingmodel predictions.

In Advances in Neu- ral Information Proccessing Systems (NeurIPS), pages 4765–
4774, 2017.

[21] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Proc. of Annual Computer Security Applications Conference (ACSAC), pages
421–430, 2007.

[22] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel. Forecast: skim-
ming off the malware cream. In Proc. of Annual Computer Security Applications

Conference (ACSAC), pages 11–20, 2011.
[23] R. Perdisci and M. U. Vamo: towards a fully automated malware clustering

validity analysis. In Proc. of Annual Computer Security Applications Conference

(ACSAC), pages 329–338, 2012.
[24] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in malware

collection and analysis using statistical classification of executables. In Proc. of

Annual Computer Security Applications Conference (ACSAC), pages 301–310, 2008.
[25] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Wang, and Y. Xiang. A3cm: Automatic

capability annotation for Android malware. IEEE Access, 7:147156–147168, 2019.
[26] D. Rabadi and S. G. Teo. Advanced windows methods on malware detection

and classification. In Proc. of Annual Computer Security Applications Conference

(ACSAC), pages 54–68, 2020.
[27] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?": Explaining the

predictions of any classifier. In Proc. of ACM SIGKDD International Conference

On Knowledge Discovery and Data Mining (KDD), 2016.
[28] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of malware

behavior using machine learning. Journal of Computer Security (JCS), 19(4):
639–668, June 2011.

[29] J.-M. Roberts. Virusshare.com. https://www.virusshare.com. visited March 2021.
[30] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. E. Harang. Aloha: Auxiliary

loss optimization for hypothesis augmentation. In Proc. of USENIX Security

Symposium, pages 303–320, 2019.
[31] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. Avclass: A tool for massive

malware labeling. In Proc. of International Symposium on Research in Attacks,

Intrusions and Defenses (RAID), pages 230–253, 2016.
[32] S. Sebastián and J. Caballero. Avclass2: Massive malware tag extraction from av

labels. In Proc. of Annual Computer Security Applications Conference (ACSAC),
pages 42–53, 2020.

[33] M. I. Sharif, V. Yegneswaran, H. Saïdi, P. A. Porras, and W. Lee. Eureka: A
framework for enabling static malware analysis. In Proc. of European Symposium

on Research in Computer Security (ESORICS), pages 481–500, 2008.
[34] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:

Visualising image classificationmodels and saliencymaps. In Proc. of International
Conference on Learning Representations (ICLR), 2014.

[35] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks.
In Proc. of International Conference on Machine Learning (ICML), pages 3319–3328,
2017.

[36] X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti. A close look at a daily dataset
of malware samples. ACM Transactions on Privacy and Security, 22(1), 2019.

[37] VirusTotal. Vt intelligence: Combine Google and Facebook and apply it to the
field of malware. https://www.virustotal.com/gui/intelligence-overview, visited
March 2021.

[38] VMRay GmbH. Malware analysis sandbox & malware detection software. https:
//www.vmray.com/products/analyzer-malware-sandbox/. visited March 2021.

[39] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck. Evaluating explanation
methods for deep learning in computer security. In Proc. of the IEEE European

Symposium on Security and Privacy (EuroS&P), Sept. 2020.
[40] G. D. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. D. Hanif, A. Zarras, and

C. Eckert. Finding the needle: A study of the pe32 rich header and respective
malware triage. In Proc. of International Conference on Detection of Intrusions and

Malware & Vulnerability Assessment (DIMVA), pages 119–138, 2017.
[41] G. Wicherski. peHash: A novel approach to fast malware clustering. In Proc. of

the USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2009.
[42] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable deep

learning under fire. In Proc. of USENIX Security Symposium, pages 1659–1676,
2020.

https://virustotal.github.io/yara/
https://www.virusshare.com
https://www.virustotal.com/gui/intelligence-overview
https://www.vmray.com/products/analyzer-malware-sandbox/
https://www.vmray.com/products/analyzer-malware-sandbox/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Malware Analysis and Tags
	2.2 Explainable Machine Learning

	3 Approach
	3.1 Behavior Monitoring and Representation
	3.2 Tag Learning and Prediction
	3.3 Generating Explanations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation

	5 Conclusion
	Acknowledgments
	References

